
Cazoodle Inc.
60 Hazelwood Drive, Suite 122, Champaign, IL 61820-7460

Web-Scale Search-based Data Extraction and Integration

Final SBIR Phase II Report - October 17th, 2011

Period of Performance: May 2009 - November 2011
SBIR Topic Number: A07-124
Contract Number: W9132V-08-C-0032

Prepared by:
Dr. Kevin C. Chang
Truman Shuck

Principal Investigator:
Dr. Kevin C. Chang
Phone: (217) 265-0299
Email: kevin.chang@cazoodle.com

For:
US Army Topographic Engineering Center
7701 Telegraph Road
Alexandria, VA 22315

J>G\xo\c6o~b5
SBIR Data Rights:
Contract Number: W9132V-08-C-0032
Contractor Name: Cazoodle Inc
Contractor Address: 60 Hazelwood Drive, Suite 122, Champaign, IL 61820-7460
Expiration of SBIR Data Rights Period: October 17th, 2011

SBIR Data Rights: The Government's rights to use, modify, reproduce, release, perform, display, or disclose
technical data or computer software marked with this legend are restricted during the period shown as provided
in paragraph (b)(4) of the Rights in Noncommercial Technical Data and Computer Software-Small Business
Innovative Research (SBIR) Program clause contained in the above identified contract. No restrictions apply
after the expiration date shown above. Any reproduction of technical data, computer software, or portions
thereof marked with this legend must also reproduce the markings.

Distribution Statement: Distribution A: Approved for public release; distribution unlimited

UNCLASSIFIED

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 07040188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704 0188), 1215 Jefferson Davis Highway. Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penally for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

REPORT DATE (DD-MM-YYYY)

17-11-2011
REPORT TYPE

Final SBIR Phase II Report
3. DATES COVERED (From - To)

May 2009 - November 2011
4. TITLE AND SUBTITLE

Web-Scale Search-based Data Extraction and Integration:
Geospatial Database Generation Agents

5a. CONTRACT NUMBER

W9I32V-08-C-0032
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

A07-I24
6. AUTHOR(S)

Dr. Kevin Chang, Govind Kabra, Truman Shuck
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

CAZOODLE INC
60 HAZELWOOD DRIVE
CHAMPAIGN IL 61820- 746

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Engineer Research and Development Center CONTRACTING OFFICE
ALEXANDRIA OFFICE
7701 TELEGRAPH ROAD
ALEXANDRIA VA 22315- 3864

10. SPONSOR/MONITOR'S ACRONYM(S)

ERDC

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution A: Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

SBIR Phase II Topic No. A07-124

14. ABSTRACT

Report developed under SBIR contract for topic A07-124, Web-Scale Search-based Data Extraction and Integration:
Geospatial Database Generation Agents. In the current age of abundant, digitized geographic data, the classic, manual approach to
geospatial feature discovery and gazetteer creation is cost-prohibitive. While geographic data has become increasingly prevalent on
the open Web, it remains largely unstructured and difficult to study. This, the GeoEngine project, has developed generalizable
methods for automatic gazetteer generation based on the ample, but unstructured data on the open Web. GeoEngine solves this
problem with a three tiered architecture: automatic data discovery and extraction, machine-based semantic aggregation and human
validation. GeoEngine has produced specific, but generalizable solutions in the following areas: sub-city feature discovery in
domestic and foreign locales; neighborhood boundary discovery and refinement; physical feature gazetteer generation and attribute
addition; Wikipedia traversal, extraction and auto-correction; and a comprehensive "Places Profile" of Afghanistan. These methods
allow for fast, automated gazetteer generation and support for geospatial research by leveraging the abundance of unstructured data
on the ontm Web and provides new wavs of thinking about old nrohlems in peopranhic information systems.
15. SUBJECT TERMS

SBIR Report; Data Extraction; Data Aggregation; Geospatial Database, Unclassified, Neighborhood Boundaries, Mosque Extraction,
Mountain Tagging. Wikipedia, Afghanistan, Populated Places, Gazetteer Generation, Hospital Discovery

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER
OF
PAGES

165

19a. NAME OF RESPONSIBLE PERSON

Dr. Kevin Chang
19b. TELEPHONE NUMBER (Include area code)

 (217)864-8378
Standard Form 298 (Rev. 8/98)
Proscribed by ANSI Std. Z39.18

Contents
1 Introduction 12

1.1 Abstract 12
1.2 Background 12

1.2.1 The Core GeoEngine: Multi-layer, Multi-extractor Platform 13

2 Extension of Phase I Work - Hospital Discovery 14
2.1 Corpus Extension 14
2.2 GeoMerging Extension 14
2.3 Extraction Results Merging 17
2.4 Ranking Algorithm 19
2.5 Performance Evaluation 20
2.6 Operations Console 20

2.0.1 Browsing Console 21
2.6.2 Deletion Operation 21
2.6.3 Merging Operation 23
2.6.4 Validation Console 24

2.7 Deliverable Gazetteer 25
2.7.1 Benchmark Performance Comparison 25
2.7.2 Distribution Statistics 27

3 Mosque Feature Discovery and Extraction 29
3.1 Language Difference 30

3.1.1 Findability Survey for Mosque Information 30
3.1.2 Text Extractor for Arabic Pages 31
3.1.3 Language prevalence 32
3.1.4 Nature of sources 32
3.1.5 Language translation 33

3.2 Information Extraction 34
3.2.1 Information availability: Chicago vs. Afghanistan 34
3.2.2 Geocoding accuracy 36

3.3 Text Extraction 36
3.3.1 City Name Annotation 37
3.3.2 Mosque Name Extraction 37
3.3.3 Mosque Tuples Assembly 37
3.3.4 Large-scale Crawling 39

3.4 Merging Mosque Features 39
3.4.1 Ambiguity due to AF vs. non-AF context 39
3.4.2 Ambiguity due to different features with same city name 40
3.4.3 Ambiguity due to variants in mosque names 40

3.5 Performance Evaluation 41
3.5.1 Precision Analysis - Reasons for Errors and Possible Improvements 41
3.5.2 Recall Analysis - Coverage of Tuples Discovered 43

3.6 User in the loop 44
3.6.1 Operation Console 44
3.6.2 User assistance in correcting record merging 45
3.6.3 User feedback for improving text extraction 47

3.7 Text Extraction Technique Improvements 48
3.7.1 Backward-context name extraction improvement 48
3.7.2 Text Extraction Performance Evaluation 50
3.7.3 End-to-end System Performance Evaluation 51
3.7.4 Enhancing Text Extraction with the NLP Techniques 51

4 Discovery of Features from Geo-tagged Images 54
4.1 Discovery of Mosque Features from Flickr 55
4.2 Creation of the Media Aggregation Engine 56

4.2.1 Discovery 56
4.2.2 Grouping 57
4.2.3 Grouping Radius 58

4.3 Grouping Benefits 59

5 Mountain Attribute Discovery 61
5.1 Administrative boundaries 61

5.1.1 ADM Boundary Dataset 61
5.2 Boundary Matching 62

5.2.1 First Placement Method: Winding Algorithm 62
5.2.2 Second Placement Method: Bounding Algorithm 62
5.2.3 Winding Algorithm and Bounding Algorithm comparison 64

5.3 Mountain Elevation 64
5.3.1 GeoNames Elevation Discovery 64
5.3.2 SRTM CSI 65
5.3.3 Conclusion 65

6 Neighborhood Extraction 69
6.1 Area of study 69
6.2 Sources 69

6.2.1 Apartment Features 69
6.2.2 Restaurant Features 73
6.2.3 Accuracy Analysis 74

6.3 Visual Analysis 75
6.3.1 Visual Analysis 75
6.3.2 Convex Hulls 76

6.4 Evaluation 77
6.4.1 Area Intersection 77
6.4.2 Evaluation Metric 77
6.4.3 Performance Results 78

6.5 Combination of feature sets 79
6.5.1 Combining Feature Sets 79

6.6 Outlier detection 81
6.6.1 Need for Detecting Outliers 81
6.6.2 Related Work 81
6.6.3 Design Requirements for Clustering Algorithms 82
6.6.4 Median Cluster 83
6.6.5 Nearby Cluster 85
6.6.6 Circle Cluster 86
6.6.7 Negative Clustering 88
6.6.8 Algorithm Chaining 89
6.6.9 Performance on Individual Dataset 89

6.7 Improving extraction methods 89
6.7.1 Resolving Extraction Ambiguities 90
6.7.2 Performance Improvement from Removing Ambiguities 93
6.7.3 Targeted Extraction using Location Tokenization 93
6.7.4 Gathering Additional Restaurant Data 91

6.8 Foreign locality 95
6.8.1 Neighborhood Discovery for Foreign Country 95
6.8.2 Ground Truth Discovery 97
6.8.3 Performance Evaluation 98

Wikipedia Traversal 98
7.1 Coordinate discovery 98

7.1.1 Motivation 98
7.1.2 Extraction of Coordinates from Wikipedia 98
7.1.3 Evaluation of Coordinates Extracted from Wikipedia 103
7.1.4 Need for Improving the Quality of the Coordinates in Wikipedia 105
7.1.5 Performance Summary 106

7.2 DBPedia exploration 10(i
7.2.1 Introduction of DBPedia Dataset 107
7.2.2 Extraction Technology of DBPedia 108
7.2.3 Coverage and Quality of DBPedia Dataset 109
7.2.4 Limitation of DBPedia 109
7.2.5 Overcoming the limitation of DBPedia 109

7.3 Alternatives to page-by-page extraction 110
7.3.1 Downward traversal of Wikipedia 110
7.3.2 Upward traversal of Wikipedia 111
7.3.3 Quality Analysis 115
7.3.4 Non-Existent Wikipedia Pages 1 Hi

7.4 Feature Gazetteer generation 116
7.5 Wikipedia autocorrection 119

7.5.1 Problems in Wikipedia Articles 119
7.5.2 Wikipedia Infobox Structure 119
7.5.3 Extracting Wikipedia Infobox Templates 120
7.5.4 Parsing Wikipedia Infobox Templates 121
7.5.5 Preparing Infobox for re-insertion within its Wikipedia article 121
7.5.6 Re-insertion of the Infobox Template 122
7.5.7 Wikipedia Correction Bot Conclusions and screen-shots 123

GeoEngine Capstone System 123
8.1 System design 125

8.1.1 Places Profile: System Design 125
8.2 Properties gazetteer 126

8.2.1 Properties Gazetteer Aggregation 126
8.2.2 Gazetteer Linking 129
8.2.3 Gazetteer Aggregation 130

8.3 Sub-city features 133
8.3.1 Sub-City Feature Discovery 133
8.3.2 Sub-City Optimization 137
8.3.3 Categorization 138

8.4 Real-time media 140
8.4.1 AUazeera Articles 140
8.4.2 Topix Articles 140
8.4.3 Twitter Real Time News 140

8.5 People collection 141
8.5.1 Populated Place Metadata - People 141
8.5.2 Additional Sources 143
8.5.3 People-Name Extraction and Linking 115
8.5.4 Linking conclusions 146

8.6 Operation console 147
8.6.1 Query Interface 147
8.6.2 Attribute Information 1 18
8.6.3 Weather Display 119
8.6.4 Visual-Map Display 150
8.6.5 Associated Media 151
8.6.6 Associated People 152

8.6.7 Timezone 155

9 Phase II Extension Proposal - GeoLinker 156
9.1 GeoLinker Prototype 156
9.2 Prototype Enhancements 157
9.3 Results 158

10 Concluding Information 159
10.1 Future Work 159

10.1.1 Hospital Discovery 159
10.1.2 Mosque Feature Discovery 159
10.1.3 Discovery of Features from Geo-tagged Images 160
10.1.4 Mountain Attribute Discovery 160
10.1.5 Neighborhood Extraction 160
10.1.6 Wikipedia Traversal 160
10.1.7 Capstone System 160
10.1.8 GeoLinker 161

10.2 Conclusions 161

List of Figures

1 The goal of our SBIR Phase II Project is to enrich geospatial databases 12
2 The multi-layer, multi-extractor-based architecture for building the GeoEngine system 13
3 GeoMerging performance evaluation on text results 15
I Distribution for results of text extraction: Number of raw records per merged record 16
5 Distribution for results of Text Extraction: Number of Sources contributing to each Merged Record. 16
6 Distribution for combined results: Number of raw records per merged record 17
7 Distribution for combined results: Number of sources contributing to each merged record 18
8 Joint distribution of the number of agent (x) and text (y) sources contributing to a merged record. 18
9 The summary snippet of an example merged result 19
10 Evaluation: 34 hospitals sampled from US News Hospital Directory 20
II Target Geography: The operational bounding box around Chicago 21
12 The top ranked results in the final output gazetteer 21
13 Browsing console for an analyst to use on the results produced by our algorithm 22
11 The Deletion Validation Console for a senior expert to confirm the deletion decisions of an analyst. 23
15 The Merging Validation Console for a senior expert to confirm the merging decisions of an analyst. 24
16 Evaluation of our final gazetteer with respect to the USGS gazetteer 26
17 Evaluation of the coverage of the USGS gazetteer with respect to the top 20 hospitals in our final

gazetteer 26
18 Distribution of the number of features extracted from each contributing source 27
19 Distribution of the number of sources from which each of the features were extracted 27
20 Distribution of the number of sources from which each of the features were extracted, after excluding

yahoo.com 28
21 Distribution of the number of algorithmic results that were merged manually per entry in the final

gazetteer 28
22 Analysis of the reasons for erroneous entries deleted by analyst 29
23 Comparison of number of results on google, com for English vs. Arabic queries 30
24 Comparison of number of results on google.com for English and Arabic versions of specific mosque

names 31
25 Nature of sources providing mosque information 31
26 Study of the nature of top 10 results for mosque related queries 33
27 Results of Google Translate from mosque names in English to Arabic to English 34
28 Information availability: Contrasting number of results found on google.com for 5 mosques in

Chicago and Afghanistan, each 35

29 Availability of information for mosques in Chicago 35
30 Availability of information for mosques in Afghanistan 36
31 Contrast of availability of information for mosques in Chicago vs. in Afghanistan 36
32 Performance of Geocoding services in supporting street addresses in Afghanistan 37
33 Performance of Google geocoding service in geocoding Afghanistan cities 37
34 The design overview of Text Extractor for unstructured pages 38
35 The span proximity model: Associating probability vs. span distance 38
36 Example results illustrating AF vs. non-AF ambiguity 39
37 Evaluation of mosque discovery: over top 60 results 41
38 Example snippet of a page where #mosque and #city appear in navigation links 42
39 Recall study of mosque tuple assembly 43
40 Illustration of user assistance in correcting record merging 44
41 The operation console of GeoEngine for discovery of Mosque in Afghanistan 45
42 Errors due to extraction from unrelated regions of the page 46
43 User feedback for detecting unrelated regions of the page 47
44 User assistance in resolving ambiguity between location and person name 48
45 Comparison of mosque names extracted by the previous implementation and the enhanced imple-

mentation from an example Web page 49
46 Evaluation of the accuracy of the enhanced implementation of the mosque name extraction 50
47 Summary of the accuracy of the mosque name extraction 50
48 Evaluation of the performance of the end-to-end system 51
49 Cyclic Dependency Network as used in Stanford's POS tagger (image obtained from [95]) 52
50 Transformation-based learning used for NP Chunking (image obtained from [84]) 52
51 Template of rules used in NP Chunking algorithm (image obtained from [84]) 53
52 Results of NP chunking on the example Web pages 54
53 Map overlay of the geo-tagged images related to mosques, obtained from Flickr 55
5 1 Dataset of the mosque-related geo-tagged images obtained from Flickr that are relevant to the

geography of Afghanistan 56
55 Mosque-related geo-tagged image dataset, after extraction of the entities-#mosque-name, #city, and

#country 57
56 Sample of context-correct and context-incorrect media items obtained from the Media Aggregate

Engine 58
57 A distribution of mosque-related media group sizes across two grouping-radius As 59
58 A distribution of mountain-related media group sizes across three grouping-radius As 59
59 A sample group from the 1 mile radius grouped media 60
60 A distribution of tags within a single mosque-related media-group 60
61 A sample group from mosque-related media with primary tags highlighted 61
62 A close up of the province of Kandahar and surrounding area, each yellow push-pin represents a

mountain feature 61
63 A summary of our findings for the original Winding Algorithm 62
64 A comparison of the original and optimized winding algorithms 62
65 A summary of our findings from the Bounding Algorithm 63
66 A comparison of the number of ADM 1 boundary matches against reducing our A precision. . . . 64
67 A comparison of the number of ADM 2 boundary matches against reducing our A precision. . . . 64
68 A summary of our findings from the Probabilistic Mapping Algorithm 65
69 A comparison of the running times of the Bounding Algorithm with those of the Winding Algorithm. 65
70 A comparison of the plotting differences between the Bounding Algorithm and the Winding Algorithm. 66
71 A map showing the plotting differences between the Bounding Algorithm and the Winding Algorithm.

for ADM level 1 66
72 A comparison of elevations from the NGA database with information taken from PeakList and

Wikipedia 66
73 A distribution of elevation differences between the existing NGA Gazetteer and values returned

from GeoNames 67
74 A comparison of changing A G {.001, .002. .003} with p = 3 on interpolated elevation 67
75 A comparison of changing p € {.5,1, 3} with S = 0.003 decimal degrees on interpolated elevation. . 67

76 A distribution of elevation differences between the existing NGA Gazetteer and values returned
from our Shepard's Method interpolation 68

77 A comparison of elevations from the NGA database with information taken from PeakList and
Wikipedia with GeoNames and Shepard's Method included 68

78 A color coded map of the Google Earth KMZ file which was used to parse neighborhood boundaries. 70
79 A distribution of restaurants across Chicago, IL as shown by Google Maps. Each red dot represents

a restaurant feature 71
80 A distribution of restaurants across Baghdad, Iraq as shown by Google Maps. Each red dot repre-

sents a restaurant feature 71
81 Two of Chicago, IL's neighboroods: Albany Park (left) and Magnificent Mile (right), to scale. ... 72
82 The opening stages of the Two Peasants algorithm 75
83 A plot of the expected boundary (green) versus the extracted boundary (red) for Albany Park. . . 75
84 An overlay of polygons generated for Albany Park. The Convex Hull is shown in blue, the Ground

Truth in red and their intersection in green 76
85 Summary of the performance of the two dataset- Apartments and Restaurants, as well as the

performance of the combined dataset. Each dataset could generate boundaries for a subset of
neighborhoods, represented under "Number of Neighborhoods" column. The metrics of precision,
recall and Fl score represent the performance of the respective dataset, when averaged over the
neighborhoods for which the dataset could generate the boundaries 78

86 A Google Earth map of the North Center neighborhood comparing the convex hull representations
of the apartment feature set (left) to the restaurant feature set (right) 78

87 A Google Earth map of the Hyde Park neighborhood comparing the convex hull representations of
the apartment feature set (left) to the restaurant feature set (right) 79

88 A binning of the precision scores from apartments, restaurants and the combination of the two. . . 79
89 A binning of the recall scores from apartments, restaurants and the combination of the two 80
90 A binning of the Fl scores from apartments, restaurants and the combination of the two 80
91 The Hyde Park neighborhood illustrates the need to detect far-off points to improve precision. The

neighborhood boundary generated by our combined dataset (shown in blue) covers much larger area
than the boundary of ground truth (shown in green) 82

92 The West Elsdon (top) and Roscoe Village (bottom) neighborhoods. West Elsdon is an example
of when Median Cluster works poorly, while Roscoe Village is an example of when Median Cluster
works well. Yellow pins outside of the convex hull (blue) are points that have been removed. The
ground truth is shown in green 83

93 Summary of the performance of the Median Clustering algorithm at different values of threshold.
For each threshold, the summary shows the number of neighborhoods that generated boundaries
after applying the clustering algorithm, as well as the average performance with respect to precision,
recall and Fl Score 84

94 The West Garfield (left) and East Garfield (right) neighborhoods. West Garfield is an example of
when Nearby Cluster works poorly, while East Garfield is an example of when Nearby Cluster works
well. Yellow pins outside of the convex hull (blue) are points that have been removed. The ground
truth is shown in green 85

95 Summary of the performance of the Nearby Clustering algorithm at different values of threshold.
For each threshold, the summary shows the number of neighborhoods that generated boundaries
after applying the clustering algorithm, as well as the average performance with respect to precision,
recall and Fl Score 85

96 The University Village (left) and Old Town (right) neighborhoods. University Village is an example
of when Circle Cluster works poorly, while Old Town is an example of when Circle Cluster works
well. Yellow pins outside of the convex hull (blue) are points that have been removed. The ground
truth is shown in green 86

97 Summary of the performance of the Circle Clustering algorithm at different values of threshold. For
each threshold, the summary shows the number of neighborhoods that generated boundaries after
applying the clustering algorithm, as well as the average performance with respect to precision,
recall and Fl Score 86

98 The Chicago Lawn (left) and McKinley Park (right) neighborhoods. Chicago Lawn is an example of
when Negative Cluster works poorly, while McKinley Park is an example of when Negative Cluster
works well. Yellow pins outside of the convex hull (blue) are points that have been removed. The
ground truth is shown in green 87

99 Summary of the performance of the Negative Clustering algorithm at different values of threshold.
For each threshold, the summary shows the number of neighborhoods that generated boundaries
after applying the clustering algorithm, as well as the average performance with respect to precision,
recall and Fl Score 88

100 Summary of the different outlier detection algorithms 89
101 Breakdown of various types of ambiguity errors associated with the natural language parsing of

Apartment feature descriptions 90
102 An example of ambiguous community area/neighborhood distinction. The apartment pin (yellow)

reports that it's in the Chatham neighborhood (green). We can see the Chatham community area
(#44 on the white overlay) is actually much closer, leading to possible ambiguity 91

103 An example of the "nearby" ambiguity. The apartment pin (yellow) reports that it is just "minutes
away"' from Hyde Park (red) 92

104 A breakdown of various "nearby" phrase usage 92
105 An example of the "feature" ambiguity. The apartment pin (yellow) reports "Harold Washington

Park," (green), which was selected as "Washington Park" (red) 93
106 An example of the tags produced by tagthe.net for a given text string. We see that this apartment

probably belongs to "South Shore." 94
107 An apartment feature from OLX. The expected neighborhood is outlined in red 95
108 AmapofneighborhoodsinSaoPauloprovidedbyinterhabit.com 9G
109 A map overlay of the extracted "Vila Maria" neighborhood after cluster analysis. Our predicted

convex hull boundary is seen in red 97
110 Illustration of Wikipedia articles that include geocoordinates 99
111 Layover of Wikipedia articles on Google Maps 99
112 Distribution of the haversine distance between the coordinates from Wikipedia and the UsingName

method 100
113 Breakdown of the results of the UsingName and UsingCity methods into different "error" cases and

"seemingly okay" cases 101
114 Distribution of the haversine distance between the coordinates from Wikipedia and the UsingName

method, after filtering out the error cases 102
115 Evaluation of the precision of UsingName method 102
116 Evaluation of the precision of the coordinates obtained from the UsingCity method 103
117 Incorrect Wikipedia coordinate: Coordinate of the parent institution 101
118 Incorrect Wikipedia coordinate: Coordinate of a city 105
119 Incorrect Wikipedia coordinate: Coordinate of a street whose name is similar to the name of a

hospital 106
120 Incorrect Wikipedia coordinate: Coordinate is near-by 107
121 Evaluation of precision of coordinates obtained from Wikipedia 107
122 Performance summary: Precision and recall of the coordinates obtained from Wikipedia, the Using-

Name method and the UsingCity method 108
123 An illustration of an Infobox template used in Wikipedia, from which DBPedia extracts structured

information 109
124 The First-level Division Wikipedia category, containing countries as sub-categories Ill
125 The sub-categories and pages within the Zimbabwe sub-category, in the Second-level Division category. 113
126 The average number of ADM level 1 and 2 areas from pre- and post-error processing Wikipedia, as

well as CADM 115
127 A distribution of ADM level 1 differences between Wikipedia and the GADM dataset, before error

elimination 115
128 A distribution of ADM level 2 differences between Wikipedia and the GADM dataset, before error

elimination 116
129 A distribution of ADM level 1 differences between Wikipedia and the GADM dataset, after error

elimination 116

130 A distribution of ADM level 2 differences between Wikipedia and the GADM dataset, after error
elimination 117

131 An example, in red, of how Wikipedia lists links to non-existent pages 117
132 A per-country breakdown of the number of populated places acquired for each country. Also features

the number of populated places featured in the NGA gazetteer 118
133 A per-country breakdown of the number of mountains acquired for each country 118
134 A per-country breakdown of the number of lakes acquired for each country 119
135 The Infobox Template for Ab Gaj, presented graphically (left) and as raw text (right) 120
136 A before (top) and after (bottom) view of the Wikipedia Correction Bot acting on the Infobox

Template for Paghman 123
137 The planned multi-layer architecture of the Places Profile 125
138 A table containing the property attributes collected from the NGA 126
139 A comparison of values gathered from the NGA dataset 127
140 A table containing the property attributes collected from GeoNames 127
141 A comparison of values gathered from the GeoNames dataset 128
142 A table containing the property attributes collected from Yahoo 128
143 A comparison of values gathered from the Yahoo dataset 129
144 A table containing the property attributes collected from Locode 129
145 A comparison of values gathered from the Locode dataset 130
146 A table containing the property attributes collected from Wikipedia 130
147 A comparison of values gathered from the Wikipedia dataset 131
148 A comparison of mapped features from Google (left) to Open Street Map (right). Centered in Kabul.

Afghanistan 131
149 An overlay of Flickr Mosque features (orange) and Open Street Map Mosque features (brown). . . 137
150 A diagram of the set of queries required to retrieve Open Street Map data from MySQL 137
151 A sample sub-city document as retrieved from MongoDB 138
152 An overlay of categorized sub-city features within Kabul, displaying religious and restaurant features. 139
153 An example of Topix aggregate articles from Kabul with sources underlined in black 141
154 An example of aggregate news stories for Kabul 142
155 An example of Twitter data originating from Kabul 143
156 A footer to an AUazeera article, showing various lists of entities contained therein 143
157 An example of two different MongoDB documents. One (left) is from the perspective of a single

person and lists all associated articles. The second (right) is from the perspective of a single article
and lists all associated entities 144

158 The list of names (left) and cities (right) that appear more than 10 times throughout the AUazeera
articles that were collected Ill

159 A binning of the number of links between people 147
160 The Capstone Front-End's home page, highlighting the populated place name auto-completion for

"Kandahar." 1 17
161 An example "detail" page for the city of Kandahar 148
162 A map of the "left" side of a populated place's detail page, including all sub-sections of the tabbed

area 1 19
163 A map of the "right" side of a populated place's detail page, including all sub-sections of the visual-

map tabbed area 150
161 The sub-sections contained within the "Media" tab from the right-hand side of the Capstone front-end. 151
165 The list of people who are associated with the current populated place 153
166 The AUazeera, MSNBC and Defense.gov viewing consoles 153
167 The cities with which Hamid Karzai is associated 151
168 The Co-Mentions graph for Hamid Karzai 151
169 The path which links Hamid Karzai to Victor Ivanov 155
170 A timeline of articles relating to Hamid Karzai 155
171 The timezone information for Kandahar 156
172 The operator console for the GeoLinker prototype 157
173 The workload browser for the GeoLinker prototype. Massachusetts is highlighted 157
174 The progress bar, highlighted in red 158

10

175 A graph that compares the number of linked features to their calculated distance from one another. 158
176 A graph that compares the number of linked features to their initial ranking in our candidate table. 159

11

Feature
-13370Q6 7 25 216 A ADM1 Zoo t f

6 35 243 P PPLA Cotonou •5

1333543 10 3 2 7S P PPL Gando ? Attri

- UFI
LAT
LON
PC

bute
1332329 6 55 2 67 F PPL AvlanKu ?

L'ruqu* leature id
1)32329 6 55 2 67 P PPL Avrankoo 7

-1333539 10 2 2 45 P PPL Gando 1 Longitud*
Feature CUss
Feature Designation

Problem 1. Discovei additional attributes for features that already exist.

Problem I Generate completely new features that do not exist currently.

Problem 3. Construct shapes of geographical boundaries and regions

Figure 1: The goal of our SBIR Phase II Project is to enrich geospatial databases.

1 Introduction

1.1 Abstract

Report developed under SBIR contract for topic A07-124, Web-Scale Search-based Data Extraction and Inte-
gration: Geospatial Database Generation Agents. In the current age of abundant, digitized geographic data, the
classic, manual approach to geospatial feature discovery and geospatial data creation is cost-prohibitive. While ge-
ographic data has become increasingly prevalent on the open Web, it remains largely unstructured and difficult to
study. This, the GeoEngine project, has developed generalizable methods for automatic geospatial data generation
based on the ample, but unstructured data on the open Web. GeoEngine solves this problem with a three tiered
architecture: automatic data discovery and extraction, machine-based semantic aggregation and human validation.
GeoEngine has produced specific, but generalizable solutions in the following areas: sub-city feature discovery in
domestic and foreign locales; neighborhood boundary discovery and refinement; physical feature gazetteer gener-
ation and attribute addition; Wikipedia traversal, extraction and auto-correction; and a comprehensive "Places
Profile" of Afghanistan. These methods allow for fast, automated geospatial data generation and support for
geospatial research by leveraging the abundance of unstructured data on the open Web and provides new ways of
thinking about old problems in geographic information systems.

1.2 Background

The goal of our SBIR project was to develop a GeoEngine system which could enhance the capabilities of geospatial
databases by using information available on the open Web. Consider, for example, a geospatial database as shown
in Figure I. Each row in this database represents a geospatial feature {e.g., a city, a river, etc.); each column in
the database represents an attribute of the corresponding feature (e.g., name, latitude, longitude, population, etc.).
Our objective in this project was to develop SBIR Phase I and Phase II technologies for enhancing this database
in three aspects:

Problem 1. Discovering missing attributes: Phase I + Phase II As Phase I objective, we aimed at
discovering values for additional attributes for features that already exist in a geospatial database. As our target
application, we studied the problem of adding the population attribute to populated place features in Benin, Africa.
In Phase II, we studied new dimensions of this problem by adding attribute data to mountains in Afghanistan as
well as examining and enhancing the attributes of Wikipedia articles.

Problem 2. Generating new features: Phase I + Phase II Further, we studied the problem of generating
new features by using information available on the open Web. We first developed our techniques for the problem of
finding hospital features in Chicago in Phase I, as well as places of worship in Afghanistan, among other features,
in Phase II.

12

Problem 3. Constructing shape boundaries: Phase II Going beyond individual points, we also studied
the problem of the discovery of complex features, e.g., generating the shape of geographical regions by inferring
the area outline from multiple spot reports. We used open source information to generate the boundaries of
neighborhoods in Chicago.

1.2.1 The Core GeoEngine: Multi-layer, Multi-extractor Platform

We built the GeoEngine system using a suite of technologies which are combined in a multi-layer, multi-extractor
architecture. The architecture, as shown in Figure 2, is composed of multiple layers of technologies and is designed
to aggregate data from sources in a variety of formats.

Layer 1. Geo-Feature Extractor (DataFactory) As the first layer, we built an array of data extraction
technologies which together provide a "factory" of data access methods. As our key innovation at Cazoodle, our
Data Factory is capable of gathering data from "Deep Web" sources, i.e., sources that contain data which are
hidden behind query forms or which require complex JavaScript interactions to obtain. Several studies have shown
that the data hidden in "Deep Web" sources is far greater in magnitude than data available in the "Surface Web,"
i.e., the part of the Web that is accessible through static URLs. Typically, search engines are capable of gathering
content only from the surface Web. Additionally, our Data Factory provides various "API connectors" for gathering
content from proprietary datasets that are hidden behind firewalls or which provide API-based access.

Layer 2. Geo-Feature Matcher The next layer provides technologies for resolving various ambiguities in
merging geospatial data obtained from various API data sources. While the DataFactory layer organizes content
from different sources in a structured database format, different sources may refer to the data elements differently,
posing challenges for aggregating this information. For example, for the task of finding population for cities in
Benin, we were faced with various ambiguities in matching place names. A city could be referred to by various
names (e.g., Cotonou, the capital city of Benin, is also known as Appi, Kotano or Cotanu). Likewise, different
cities could share the same name {e.g., Benin has 12 cities with the name, "Gando"). The Geo-Feature Matcher
provides technologies for effective matching of geospatial data obtained from different sources.

Layer 3. Operation Console As the top layer of our architecture, we provide an interactive console for an
analyst to visualize the results of the GeoEngine system. One of the lessons we learned is that the algorithmic
results may not be able to completely substitute for human judgment; rather, the automatic techniques may
produce ranked lists of results that can be inspected by an operator, who can make final decisions. Therefore, as
part of our technical approach, we built technologies to aid in the creation of operation consoles that an analyst
can use to rapidly inspect algorithmic results. For example, in our population task, we built a console that displays
the top ranked candidates for the population attribute of the input city; for each candidate answer, the console
shows the score, a list of evidence and a snippet of text from each source of evidence. The analyst can click on

* g£ fa3CO GcoEnxinc

GmEuftiiw Applicjlic ,..„,.,. 9 „ ,m

T* r.r :-. <?• "....,.,. Q~»- P ..,,.•

1 Operation Console 1
Integrated Gazetteer

[Geo-Feature Matcher 1 1 sr s
"A.

DataFactory Ceo-Feature" Extractors
. . . .
a a a a a BIRIRIKR . * » *

Open Web Data Intranet Enterprise Data Open API Access

Figure 2: The multi-layer, multi-extractor-based architecture for building the GeoEngine system.

13

any of these pieces of evidence, which will open that source in a preview tab on the right panel. Additionally, the
console also includes panels for browsing population results returned by general search engines. The analyst may
interactively drag-and-drop the most appropriate answer to the bottom-left panel, which will save the results in
the output database.

2 Extension of Phase I Work - Hospital Discovery

In the extension of Phase I work, we finished several remaining tasks of our "Hospital Discovery System." In
Phase I, we had finished designing of both extraction modules - agent extractor (for structured sources) and
text extractor (for unstructured sources). We had also designed the "GeoMerging" algorithm for grouping raw
hospital tuples, and applied it to the results from the agent extractors. In Phase II, we continued to accomplish
the following remaining tasks.

a) Deployed text extraction to large scale "hospital corpus".

b) Extended the GeoMerging algorithm to text extraction results.

c) Developed scoring functions for ranking the merged hospital records.

d) Combined all components together into an online system.

e) Evaluated performance of the overall system.

2.1 Corpus Extension

For discovering hospital tuples from unstructured text pages, we continued to expand our pilot study of a small
set of "hospital-likely" pages to a much larger corpus, to further our techniques. In Phase I, we developed a text
extraction module and evaluated its performance using a small corpus of fOOO "hospital-likely" pages, which we
obtained from searching "chicago hospitals" at Microsoft Live Search. We expanded the experiment from 1000 to

1 million pages.
To begin with, we crawled a large corpus of text pages. We designed a focused crawler program [54, 58] to

prepare a large scale corpus of "hospital-likely" pages. Our focused crawler, taking the IK "hospital-likely" pages
as the seed URLs to start with, traversed the hyperlinks around them to collect pages from their neighborhood,
which are also likely to be pages containing hospital information. Specifically, we feed our crawler with the IK
seed URLs. The focused crawler then started at each of these URLs, parsed the hyper-links on the page to discover
new URLs, and continue this "crawling" to gather pages within "depth 3"—i.e., three links away from the seed
URL. This focused crawling from the 1000 seed URLs resulted in about 1 million pages overall.

Further, we applied our text extraction module over this corpus of 1M pages so that our text extraction
module would skip those pages that have more than three addresses. Also, we removed the hospital tuples from
text extraction with a score—i.e., the frequency of occurrence from various pages— less than a threshold, which we
chose as 10. The low scores of these candidate tuples indicated that they were likely to be incorrect associations of
hospital name and addresses. Overall, from this 1M corpus, we obtained 8329 raw hospital records with addresses
within 50 miles from Chicago.

2.2 GeoMerging Extension

Our two extraction modules—i.e., Agent Extractor and Text Extractor - produce raw hospital records. Upon
these raw records, we need to apply the step of GeoMerging to group the raw records that refer to the same hospital
feature into a merged record. Our GeoMerging algorithm attempts to address various ambiguity challenges:

• For name: The name of a hospital is not a unique identifier—a unique hospital can have multiple names (e.g.,
"Rehabilitation Institute of Chicago", or "Rehab Center", or "Resurrection Medical Center"), and different
hospitals can all have the same names (e.g., St. Joseph Hospital has branches in many cities in USA).

• For address: The same hospital can be referenced using different addresses (e.g.. "450 Northwest Hwy,
Barrington, IL 60010, USA" vs. "450 W. Highway 22 Barrington. IL 60010"). This may reflect multiple
buildings associated with the same hospital.

11

Sampleld Records Merged Correctly Merged Precision Missed to Merge Recall

SI 13 13 100% 20 39.4%

S2 26 26 100% 0 100%

S3 11 11 1(10% 0 100%

S4 1 1 100% 2 33.3%

S5 (i 6 100% 0 100%

Overall 57 57 100% 22 72.2%

Figure 3: GeoMerging performance evaluation on text results.

• For phone: The same hospital can appear with different phone numbers that represent different departments
in the same building.

For agent-extractor results from structured sources, our GeoMerging algorithm overcomes these challenges
using a two-step matching process. 1) Direct matching: We merge records when their address, phone, or geo-
coordinate attributes are the same. Each of these fields represents a unique way we refer to a "business" and
their exact match indicates records can be immediately merged together. 2) Inferred Matching: We merge records
when their name attribute matches approximately, and at least one of the three attributes- address, phone, and
geo-coordinates— matches approximately.

However, does the same scheme work for text-extraction results, which are inherently more "noisy"? While the
GeoMerging algorithm worked quite well on agent-extraction results, we found its performance unsatisfactory for
text-extraction results. For agent results, the precision and recall were 99.39% and 88%. The performance of the
same scheme over text sources was quite poor - because the direct matching step relies on the association of address
and names being correct, which does not necessarily hold true for text-based extraction. In the above scheme,
the direct matching step simply merges records with the same addresses. Unfortunately, for Text Extractor, the
accuracy of name-address association in candidate records is only 15%, i.e., 85% of the tuples potentially represent
noisy associations that should not be trusted. Consequently, the direct matching step tends to merge hospital
tuples with widely different names, simply due to their same addresses. That is, essentially, errors would propagate
from extraction of records to their merging.

To accommodate the inherent inaccuracy of Text Extractor in association of name with address, we extended
the direct matching step to also look for similarity in hospital name. With this change, our direct matching would
not make the mistake of merging raw records that share the same address, when their names are quite different.

We assessed the modified GeoMerging algorithm using the precision and recall metrics. Applying the GeoMerg-
ing algorithm on the 8329 text records extracted from the 1M hospital corpus, we obtained 688 merged records
with an address within 50 miles of Chicago, IL. To assess these results, we randomly sampled 5 merged records. To
evaluate precision, for each sampled merged record, we inspected each of the corresponding raw records, to ascer-
tain how many actually refer to the merged hospital feature. To evaluate recall, for each sampled merged record,
we inspected all the raw records that shared the "key term" of the corresponding hospital name, and counted how
many our algorithm missed to merge. For example, for the first sampled record, our algorithm merged 13 raw
records. Of these, all 13 correctly referred to the merged hospital feature and, therefore, the precision for this
sample point is 100%. For recall, for the same sampled record, we manual inspection found that the algorithm
missed to merge 20 other raw records—thus, its recall is 13/33 or 39.4%.

Overall, as Figure 3 shows, our algorithm's precision is 100% and recall is 72%. In comparison, the precision
and recall of the GeoMerging algorithm on agent-extraction results were 99.4% and 88%, respectively. While the
precision metrics of GeoMerging on both results are quite high, the recall for text-extraction results is much lower
compared to that of the agent results. Our analysis showed that this recall degradation is due to our modification
to the direct matching step—for text results, direct matching also requires hospital names to be similar which
resulted in the decreased recall since a hospital feature can have quite different names (e.g., "resurrection center"
and "rehab medical institute")—such place name matching, as well-known in G1S research [63, 64], is inherently
imperfect.

We observed, from the frequencies versus the counts of records, a classic Zipf [102] (or power law) distribution
with a "long tail" phenomenon [43]. First, in Figure 4, we show the distribution of the number of raw records
per merged record. Of the 688 merged records obtained, we observed a "long tail" distribution. Some sources
have very high frequencies of occurrences; e.g., 53 out of 688 were the results of merging 20+ (more than 20) raw

15

Haw Records per Merged Record Number of Merged Records
1 362
2 100
3 44
4 29
5 20
6 19
7 10
8 8
9 4

10 8
11 6
12 2
13 7
1 1 6
r> 1
17 4
18 2
19 1
20 2

20+ 53
Total 688

Figure 4: Distribution for results of text extraction: Number of raw records per merged record.

Number of Sources per merged record Number of Merged Records
1 475
2 86
3 39
4 28
5 18
6 14
7 12
8 8
9 2

10 2
11 1
12 1
14 1
21 1

Total (iSS

Figure 5: Distribution for results of Text Extraction: Number of Sources contributing to each Merged Record.

records—indicating a few popular hospital features are discovered very frequently. On the other hand, however,
many records have low frequencies. In particular, 362 records have only one source record (thus, for these "merged"
records, there is no merging with others beyond themselves) and 100 have two records. Second, we can similarly
observe the long tail distribution for where—how many sources—we can expect to find a record. As Figure 5
shows, we also studied the distribution of the number of sources contributing to each merged record; i.e., the
number of sources where a merged record occurs. As we see, the distribution shows a similar long tail distribution.

The observation of the long tail distribution indicates the need for a comprehensive corpus as sources in
discovery. Where can we expect to discover a hospital feature? For a few popular hospitals, as they are frequently

10

Raw Records per Merged Record Number of Merged Records
1 776
2 229
3 90

1 70
5 58
(i 27
7 19
8 14
9 5

10 12
11 10
12 1
13 6
14 8
15 2
16 2
17 2
18 1
19 1
21 7
22 3
23 1
2 1 2

25+ 79
Total 1431

Figure 6: Distribution for combined results: Number of raw records per merged record.

mentioned (indicated from their high frequencies in Figure 5), we can expect to find them even in just a small
number of selected sources. However, for the "long tail" of less frequent hospitals, we will need to look for them
"everywhere," since they may not appear in the selected sources. Thus, for comprehensive discovery, we will need
a comprehensive set of pages to cover as many hospitals as there exist.

2.3 Extraction Results Merging

With both the agent and text results ready, we applied the GeoMerging algorithm on the combined results—the
set of 11951 raw records obtained from the agent extractor and the text extractor. After merging, we obtained
1431 hospital features within 50 miles of Chicago, IL. We make two observations.

First, we again see the long tail phenomenon. Similar to the analysis in Section 2.2, for the combined results,
we show the distribution of the number of raw records per merged record in Figure 6 and the number of sources
per merged record in Figure 7. Evidently, the distributions are of the Zipf-type, where we see a long tail of many
hospitals that could be found only in a smaller number of sources. Thus, for comprehensive discovery, we cannot
simply focus on a few selected sources; instead, we must be comprehensive over many sources.

Second, to understand the influence of each extractor, we study the "joint" distribution of results from Agent
Extractor and from Text Extractor. As Figure 8 summarizes, we analyze the number of text sources and the number
of agent sources contributing to each merged record. The columns (x) and rows (y), respectively, represent the
number of agent sources and the number of text sources contributing to a merged record. A cell (x, y) records the
"count" (i.e., number) of merged records that are discovered by x agent and y text sources. E.g., the cell (2, 3)
has a count 5; i.e., there are 5 merged records that were obtained from 2 agent and 3 text sources. Note that, in
the table, we use * to represent any value of a; (or y); e.g., cell (2, *) has count 166, which indicates 166 merged
records were found in 2 agent sources and any number (0 or more) of the text sources.

The observations from the joint distribution show that the dual extractors—Agent Extractor and Text Ex-

17

Number of Sources per Merged Record Number of Merged Records
1 1135
2 122
3 31
4 25
5 13
6 13
7 11
8 7
9 7

10 7
11 9
12 3
13 4
14 14
15 6
16 4
17 9
19 4
20 2
22 2
24 1
27 1
31 1

Total 1 131

Figure 7: Distribution for combined results: Number of sources contributing to each merged record.

y: Number of
Text Sources

x: Number of Agent Sources
0 1 2 3 4 5 6 7 8 9 10+ *

0 0 447 150 54 40 33 10 8 6 4 25 777
1 329 4 2 4 3 0 0 3 0 1 1 347
2 76 0 4 4 0 2 0 0 0 1 10 97
3 33 2 5 1 0 0 0 0 0 0 2 43
4 21 1 2 0 0 0 0 0 0 0 2 26
5+ 85 0 3 1 2 0 1 0 2 2 45 141
* 544 454 166 64 45 35 11 11 8 8 85 1431

Figure 8: Joint distribution of the number of agent (x) and text (y) sources contributing to a merged record.

tractor—complement each other well. On the one hand, a fairly large number of merged records were discovered
only from agent sources, or only from text sources—indicating that both extractors are essential and they will
complement each other. The count of cell (0, *) shows that as many as 544 of the 1431 merged records were
obtained only from the text sources. Likewise, the cell (*, 0) counts 777 of the 1431 were obtained only from the
agent sources. Thus, both the extractors have unique contributions in our discovery process.

On the other hand, a significant number of merged records were obtained from both types of sources—thus,
the two extractors can reinforce each other as well. From Figure 7, subtracting 544 of (0, *) and 777 of (*, 0) from
the total 1431, we obtained 110 records which appeared from both extractors. Furthermore, from cell (10+, 5+),
we see that 45 merged records are obtained from a large number of agent as well as a large number of text sources.
We believe this "diversity" of supporting evidence leads to two implications of our dual-extraction approach:

• The abundance of evidences across different extractors reinforces the confidence of discovery. These candidate

IS

n Northwestern Memorial Hospital

221 E Huron St, Chicago, IL 60611-2957, US
£j (312)440-0709

Northwestern Memorial Hospital:
Northwestern Memorial Foundation

Northwestern Memorial Hospital: Crisis
Intervention Hotline

Rehab Institute Of Chicago

Rehabilitation Institute of Chicago

The Rehab. Institute Of Chicago

Rehabilitation Institute of Chicago

Northwestem-Anesthsla Department

Keith, Louis G MD • Northwestern
Memorial Hospital

northwestern memorial hospital

northwestern memorial hospital

676 N Saint Clatr St, #2050,
Chicago, IL 60611-2942, US

251 E Huron St, Chicago, IL
60611-2908, US

(312) 926-2033

(312)926-9586

345 East Superior Street,
Chicago, Illinois, 60611 4496 USA

345 East Superior Street,
Chicago, Illinois, IL 60611 USA

345 E. Superior Chicago, IL 60611

345 E Superior St, Chicago, IL (312) 238-1000

333 E Superior St, #466, Chicago,

333 E Superior St, #464, Chicago,

345 E Superior St, Chicago, IL
606H-2654, US

345 E Superior St, Chicago, IL
60611-2654, US

«• Score = 6560 from 49 A-sources. 1116 T-sources

upport Url

maps, good e.. (agent)

maps.floode.co i(agent)

www.hospitalsworldwlde.o • (agent)

www.hi (agent)

www.yimc.corr tment)

local.vah< (agent)

local.yahoo..:en (agent)

(agent)

evenu.nbcchtcago.ccii (text)

^ww.n.:. (text)

(312)926-7632

(312) 926-2000

Figure 9: The summary snippet of an example merged result.

records are likely to be correct ones. As Section 2.4 will present, we use such repeated evidences as voting
in our scoring function for ranking discovered records.

• The variety of information from different sources enriches the discovery. While structured sources, through
Agent Extractor, tend to give correct results, they are also likely to contain only repeating "directory"
listings, such as contact information. Text sources, in contrast, while harder to extract, tend to provide more
interesting and diverse contents {e.g., descriptions, reviews, comments). Together, the dual types of sources
will reinforce to provide not only correct but also rich information.

2.4 Ranking Algorithm

After combining the dual extractors, we next discuss how the merged hospital records are scored to obtain the
final ranked results. As the base score, we score each raw record t = (name, address, phone, source) as follows:

• If Ms from text extraction: Score(t) = \og(Wt), where Wt is the Web reference of t {e.g., the hit count of
searching / at a search engine). That is, we take the logarithmic value of how many times the tuple has been
mentioned on the Web, as an indication of its correctness.

• If / is from agent extraction: Score{t)
equally reliable.

1. That is, we treat each agent result from structured sources as

Now, we need to compute the scores of a merged record based on the scores of its raw records. As an example.
Figure 9 shows a merged result which is obtained from merging 49 agent records and 1126 text records.

The Result Ranker module essentially aggregates, for each merged tuple, the scores of the supporting raw tuples,
much like voting, accounting for the reliability of the originating sources. As just explained, each supporting result
is of the form t = (name:;;, address:a, phone:/>, source:*)—i.e., a new feature with name n, address a, and phone p,
which is obtained from source s. Let X be the set of extractors x (we currently have two extractors), and Tx be
the set of tuples t = {n, a, p, s) that extractor x produces. We merge them by an aggregation of the tuple scores
over all the extractors and all the sources. However, as not all results are equally efficacious, the aggregation must
differentiate where (from which source) a result is collected, and how it is processed (by which extractor). To

1!)

Method Total Discovered Correct Precision Recall
Structured Sites (15 agents) 22 22 22 100% 100%
Text Crawl (1M pages) 22 19 19 100% 86%
Overall Combined 22 22 22 100% 100'X

Figure 10: Evaluation: 34 hospitals sampled from US News Hospital Directory.

differentiate the appropriate extractor, we weigh the results from extractor x by a constant factor ax. Specifically,
our implementation sets Qi = 1 for Text Extractor and c*2 = 7 for Agent Extractor, to reflect the empirically
obtained 15% accuracy of Text Extractor compared to 100% accuracy of Agent Extractor. Similarly, we weigh
each source s by a constant (3S. Without further source information on source authority, our implementation
currently sets j3s = 1 for all sources.

The overall score for a candidate hospital feature (n, a, p) is simply the weighted sum over all its supporting
raw records t = (n, a, p, s), which comes from various sources .s and is extracted through different extractors x:

Score(n, a, p)
xex

E /3S • Score(t)

t=(n, a, p, s)e Tr

(I)

For instance, for the example result in Figure 9, the merged record ("Northwestern Memorial Hospital", "251 E
Huron Street, Chicago, IL", "(312) 440-0709") has a final score 6560. As Eq. 1 states, it sums up the scores of the
supporting raw records: 49 records from Agent Extractor (e.g., the first 8 rows in the summary table) and 1126
records from Text Extractor {e.g., rows 9 and 10). The column labeled "Support" shows the weight values which
differentiate the extractors ax (for Text or Agent Extractors), since we do not use different {5S for the sources.

We note that, by exploiting such "supports," we naturally exploit the "redundancy" of the Web, where the
same information may appear multiple times. As the key insight, through the redundancy, we expect correct
information will be correct "in the same way," while an incidental error will be wrong "in its own way." While
not always true, it is intuitive that information that appears multiple times is more likely to be a "consensus"
answer, rather than an incidental error. We thus take the analogy of "voting", in which we score each final result
by aggregating the scores of its supporting raw results.

2.5 Performance Evaluation

To evaluate the overall performance, we assessed how well it could discover hospital features. We sampled 22 hos-
pital features randomly from all the hospitals listed in US News Hospital Directory1 for the Chicago metropolitan
area. The results are summarized in Figure 10.

• For the structured sites using f5 agents, for all the 22 sampled features, the top result from our system is
always correct. Thus, a precision of 100% and recall of 100%.

• For the unstructured sources using 1M pages, of the 22 sampled features, our system discovered 19 of them.
For the 19 features that our system discovered, the top result was always correct. Thus, for text sources our
precision and recall are 100%, and 86%, respectively.

• Overall, for the combined agent and text results, the top result of our system is correct for all the 22 sampled
features, i.e., both precision and recall of 100%.

2.6 Operations Console

We now describe our design of the Operations Console so that an analyst can inspect the results generated by
our system and determine entries that should be inserted into the final gazetteer. This task will require several
operations carried out with the results generated by our system. We use an illustrative scenario to demonstrate
the overall process, including various editing operations.

'online at http://liealth.usnews.com/features/health/hospital-directory.html.

20

loriV" V Northbrook

Arlington
Heights Ml Prospect

lumourg Des Ptai

Elk Grove Park
Village

Addison

Elmhurst

sle

<lge Danen

OK PalosHUrs
Zjr Lemon.

Ofland Park 3!
Homer Glen Tiniey Park

Blue Island"
Calumet Chicag

Harvey j p^v I]7

Lanung1 H»mmon

Figure 11: Target Geography: The operational bounding box around Chicago.

northwestern memorial hospital ,6 41 8967 8762

1-87.6048

303 E Chicago Ave Chicago, IL 60611-3008, US

5 721 S Maryland Ave, Chicago. IL 60637 142 5, US 1(773) 702-9200 Comer ChdoYens Hospital 133 |41.7909

Cook County Hospital |W 141.874 1-87.6741 1901 W Harmon St. Chicago, IL 60612-3714. US ',312)633-6000

1(312) 770-2000 Saints Mar> and Elizabeth Medical Center; Satnt Mary Campus
Saint Joseph Hospital

23
22

419029
41.9349

87683
87.6369

8~6501
876957

2233 W Division St. Chicago, IL 60622-3043, US
2900 N Lake Shore Or, Chicago, IL 60657-5640, US 1(773) 665-3000

Illinois Masonic Hospital 22 41 9365 836 W Weftngton Ave, Chicago, IL 60657-5147, US (773)9751600
Schwab Rehabilitation Hospital 21 41.8625 1401 S California Ave, Chicago IL 60608-1612 US ',-73! 522-2010

West Suburban MeoVal Center 20 41 8917 87 7753 3 Ene Ct. Oak Park, IL 60302-2519, US

[5145 N Cafcrru Ave, «370, Chicago, IL 60625 3661,
708-383-6200

US (773) 878-8200 Swedish Covenant Hospital 20 141.9749 -87.6988

Rush University MeoVal Center 19 416-5 87 668]1653 W Congress Pky. «622, Chicago, IL 60612-3833 US (312)942-5000

Figure 12: The top ranked results in the final output gazetteer.

2.6.1 Browsing Console

The screenshot in Figure 13 shows the first console for browsing results generated by our algorithm.

• The left panel shows the list of all the results that still need to be inspected by the analyst. The search box
can be used to search within the candidate hospital results by name. For the query "north," our system
returned 9 matching results that were produced by our algorithm.

• The snippet of each result includes the name, address and phone number of the hospital. The snippet also
displays the overall score of this merged result, and the number of the raw agent and text records that were
merged to produce this result. The last result in the search list is: "Northwestern Medical Faculty," with
an address of "680 N Lake Shore Dr, #1000, Chicago, IL 60611-3057, US" and the phone number as "(312)
695-9797." This merged result was produced by combining 114 agent records and 6 text records, with a final
aggregate score of 811, as produced by our Geolntegration ranking function.

• The panel on t he right shows t he entries already present in the final gazel leer based on the analyst opera I ions.

• The center panel shows the location of hospitals on a map for easy visualization of each result in the search
list. The display shows nearby hospitals, as well as hospital results that have been inserted into the final
gazetteer.

2.6.2 Deletion Operation

The results produced by our algorithm may not represent meaningful associations. In fact, of the 9 results shown
in the screenshot in Figure 13, the analyst determined that 5 results need to be deleted. Overall, after full editing
of the 351 results produced by our algorithm (within our target geography), the analyst deleted 63 results.

We provide the following I'll net ions to support the delet ion of results.

21

VateoEngine

Mm
135, Northwestern Memonal Physicians Group -* 4»»

3245 NHalsledSI Chicago IL60657-3419 US• A

3 (773) 528-5006 «• Score » 14 from 2 A-sources 0 T-sources

linkl Iinlc2

5609. northwestern memonal hospital 4^

303 E Chicago Aye Chicago IL 60611-3003 US 9 A

3 - <•> Score = 5.1 from 0 A-sources 34 T-sources 3

linkl Ilnk2 Imk3 Iink4 1

6424. northwestern memonal hospital i>JC

350 N Orleans St Chicago IL 60606. USA • A *

3- •*» Score = 0.15 from 0 A-sources 1 T sources

liDM D

6462. northwestern university medical center ** 4^ i catfiwlni
pa. , I»«>P»I

303 E Chicago Ave Chicago IL 60611-3008 US -3 "N » Center

t3- «» Score = 0.15 from 0 A sources 1 T sources ^gi

im donei
Ne«r by Search Ntt heed v«l»datK

iin-1

15230. northwestern memonal hospital j*^

4025 N Sheridan Rd Chicago IL 60613*2010. US 3 "^

nd«M E EOr«ftd*«

iin-1

> Score = 0.15 ftom 0 A-sources 1 T-sources

OK 17727. cooK county hospital northwestern memonal hospital

350 N Orleans St Chicago IL 60654-1501 US• <

3 *• Score = 0.15 from 0 A-sources 1 T-sources

nnm

18493. cook county hospital noitliwestern memorial hospital * JC

6520 S Cicero Ave Chicago IL 60638-5804 US • '"*>

3- <*• Score = 0.15 from 0 A-sources 1 T-sources
linkl

2. Morthw?;lem Memorial Hospital X

221 E Huron SI Chicago IL 60611-2957 US •i A

3(312)440-0709 "> Score = 6560 from 49 A-sources 1126 T-sources

linkl hnk2 Imk3 Iink4

53. northwestern Medical Faculty X

680 N Lane Shore Or H1000, Chicago. IL 60611-3057. US 3 A

3 (312) 695-9797 - Score = 811 from 114 A sources 6 T sources

linkl Iink2 Iink3 Hnk4

32 - Kindred

Hospital North

126 -VCA Chicago

North Animal

Hospital

131-Mid North.

Animal Hospital

132-Near North

Animal Hospital
Limited

^t.toti - gtwM*"i»
Googk

Figure 13: Browsing console for an analyst to use on the results produced by our algorithm.

• Each result includes an "X" button to delete that result. The analyst should determine that the result is
really a hospital (e.g., "the car hospital" is actually a car repair shop) and that the address of the result
correctly represents the location of the hospital. If these conditions are not met, the result should be deleted.

• We highlight the results having low scores with a special "smiley" sign. This provides a cue to the analyst
that this result has low algorithmic confidence, so there is a greater possibility that the result should be
deleted.

• For each result we list hyper-links of the sources from which that hospital record was discovered by our
algorithm. The analyst can click on these links to inspect the target sites and to determine if the hospital
name is associated with the correct address.

• Each result includes a "G" sign, which will open a new browser window with results from a general Web
search engine (currently set to google.com). We use the address of the hospital result as the keyword query.
This helps the analyst find what facilities are located at a particular address, by looking at snippets of the
search result or by inspecting a few of the topmost results. The analyst could further modify the query to
add key terms from the name of the hospital result; the search engine would then likely return the pages
that mention both the name and the address of that hospital result.

22

CSeoEngine Name Search

2230, Children's Memorial gaz id: 1 •^•^ •*

737 N Michigan Ave Chicago. IL 3 "^

3(312)475-0173
linkl

"> Score = 7 from 1 A-sources 0 T-sources

MMOXH

I'm donef

Near by Search list Need Validation

2260. St Joseph Village gaz

4021 WBelmontAve, Chicago. IL 3 "N

£3 (773) 328-5500 <*» Score = 7 from 1 A-sources 0 T-sources
ImM

6424. northwestern memorial hospital gazjd: -1 •* ^ tm

350 N Orleans St. Chicago IL 60606 USA !9 '""% Rlvd

23 • ** Score = 0.15 from 0 A-sources 1 T-sources IK

linkl "*

15230. northwestern memorial hospital gaz id: -1 -=»^ **

4025 N Shendan Rd. Chicago. IL 60613-2010. US 5 <

linkl
«e Score = 0.15 from 0 A-sources 1 T-sources

jt-iexa / 17727. cook county hospital northwestern memorial hospital gaz_id:

350 N Orleans St Chicago IL 60654-1501. US 3 \

t3 - <** Score = 0.15 from 0 A-sources 1 T-sources HUsSf"

liDKl

18493. cook county hospital northwestern memorial hospital oaz id: 1 -=*^ *

6520 S Cicero Ave. Chicago IL 60638-5804, US 3 \

23- <»* Score = 0.15 from 0 A-sources 1 T-sources
linkl

\ w "\ . Oak Lawn
Paios Hills

VKD BV

\jo*> Lam i fci^

' Blu*l«ti»ttA1griti^M

P'igure 14: The Deletion Validation Console for a senior expert to confirm the deletion decisions of an analyst.

2.6.3 Merging Operation

After the deletion step, the analyst is left with results that are valid hospital features. Each of these results
represents a group of raw records, merged by our Geolntegration algorithm. When inserting these results into the
final gazetteer, the analyst needs to verify if additional merging is needed. In particular, our algorithmic merging
may produce more than one group for the same hospital feature. The analyst can further merge such results, as
follows:

• Each result includes a "lens" icon, which zooms into the part of map surrounding the location of that result.
It shows all the other results in the vicinity of the result, including those that are still in the search list,
those that have been deleted, or those that have been inserted into the final gazetteer. This function helps
an analyst determine whether to create a fresh entry for the result or to add it to an existing entry in the
gazetteer.

• If the analyst determines that a hospital result represents the same feature as one of the entries that already
exists in the gazetteer, the hospital result can be dragged and dropped into the box on the right panel, which
corresponds to that gazetteer entry.

• If none of the existing entries in the gazetteer match the new hospital result, the analyst needs to create a
new gazetteer entry for that result. The analyst can drag and drop the hospital result to the "New*' box
above the map in the center panel. This step will create a new entry for this result in the final gazetteer.

23

ImM

9481. sainl francis hospital saint Joseph hospital gazjd: 54 ^

Lake Shore Drive. Chicago. IL 60640. US 5 A
3 - <*» Score = 0.9 from 0 A-sources 6 T-sources
linK1 Iink2 Iink3 linK4

9484. saint ioseph hospital aai id: 54 #»

Lake Shore Drive. Chicago. IL 60640. US J '"S
i3 - • Score = 2.55 from 0 A-sources. 9 T-sources
llnkl Iink2 Iink3 Iink4

4. Saint Joseph Hospital gazjd: 54 ^

2900 N Lake Shore Dr. Chicago. IL 60657-5640. US 3 \
3 (773) 665-3000
linkl Iink2 Ilnk3 Ilnk4

i Score = 1237 from 126 A-sources. 341 T-sources

237. Our Lady ot Resurrection Ctr gat id: 55^

5645 W Addison St Chicago. IL 60634-4403. US 5 'A
3 773-282-7000 «• Score = 233 from 15 A-sources. 83 T-sources
linkl Iink2 Iink3 Iink4

238. Shriners Hosos lor Children gar_id: 561%

2211 N Oak Park Ave. Chicago, IL 60707-3351. US \3 <
3 773-622-5400 <•» Score = 111 from 12 A-sources. 14 T-sources
Iink1link2link3link4

1551. Shriners Hospitals tor Children-Chicaoo gaz jd: 56 «* H

2211 North Oak Park Avenue Chicago, IL 60707-3392 3 A
3 - «• Score = 7 from 1 A-sources. 0 T-sources
linkl

Justice
—»' V uiryHiltj
•i * \ . Oak Lawn

urn

A»p

Figure 15: The Merging Validation Console for a senior expert to confirm the merging decisions of an analyst.

2.6.4 Validation Console

The Operations Console includes a final validation step for all decisions made by the analyst by means of the
browsing console. We envision the overall process as being composed of two steps, in which first, a junior analyst
generates an initial gazetteer, and then, the senior domain expert verifies these decisions. In situations in which
the senior expert executes the first step with the browsing console, the validation step can be skipped and the
initial gazetteer can be accepted as the final form.

• In the deletion validation console, as shown in Figure 14, we display all the hospital results that were deleted
by the analyst from the browsing console. The senior expert verifies each deletion decision using procedures
that are similar to those used with the browsing console. If the deletion is correct, the senior expert can

21

approve it. Otherwise the result can be sent back to the browsing console for the analyst to inspect again.

• In the merging validation console, as illustrated in Figure 15, the senior expert can see all the merging
decisions made by the analyst. Each entry represents a gazetteer entry that is composed of multiple results
produced by our algorithm. The senior expert can verify that the results grouped by the analyst represent the
same feature. Also, the expert can verify whether the analyst failed to merge any results. Upon completion
of this validation step, the final gazetteer will be produced and will be available for use by any intelligence
application.

After operating on 351 results in the target geography, the analyst deleted 63 results, and merged duplicate
results to produce 259 entries in the final gazetteer.

2.7 Deliverable Gazetteer

For the final gazetteer delivery, we used the Operations Console ourselves, "emulating'' how an actual analyst
would use it. The Operations Console was designed to be used in two steps: 1) For a junior analyst to construct
a gazetteer using the hospital results generated by our automated techniques developed in the Phase I Option
period, and 2) For a senior expert to verify the decisions made by the analyst. The resulting output was used as
the final gazetteer.

We limited this study to a target area in a 5-mile rectangular bounding box around Chicago, as highlighted in
Figure 11. Of the total of 4454 merged results produced by our algorithm for the Chicago metropolitan area, we
found that 351 results fell into our target geography. The two steps of full deployment of the Operations Console
for the final gazetteer delivery-for the junior analyst to construct gazetteer and the senior expert to validate
decisions-each took one day of human effort.

An analyst inspected each of the 351 results, and a senior expert verified the decisions, resulting in the output
of 259 hospital features. In comparison, the benchmark dataset from the US Geological Survey (USGS) contained
only 94 features. Figure 12 shows a sample of entries from the final gazetteer. The full gazetteer is publicly
available for download at http://geoengine.cazoodle.com/data/finalgazetteer.txt. Bach final entry was
obtained as a result of the merging of raw records from several online web sources. For example, the top entry,
"Northwestern Memorial Hospital,'" was discovered from among 36 online sources. Overall, the 259 features were
obtained from a total of 189 web sources.

2.7.1 Benchmark Performance Comparison

We used the hospital features in the USGS gazetteer as the benchmark for our evaluation and filtered the hospital
features within our target geography. Upon filtering, we obtained 94 hospital features from the USGS gazetteer
(available at http: //geoengine. cazoodle.com/data/usgsgazetteer.txt).

Observation 1. Our final gazetteer covers 100% of the features in the USGS gazetteer.
We sampled 50 features from the USGS gazetteer and for each sampled feature we checked to see if our final

output gazetteer contains that feature. We summarized our findings in Figure 16. Of the 50 sampled features, 2
hospitals have incorrect geo-coordinates in the USGS gazetteer. One of them, "St. Vincent Hospital," is actually
in Massachusetts; another one, "Evangelical Hospital," is located in Pennsylvania. Of the remaining 48 features
in the sample, our algorithm successfully discovered 42 features—finding an "exact match" for 34 features and a
variant name for another 8 features. Our algorithm could not find the remainder of the 6 features; however, we
observed that all of these 6 features represented hospitals that are no longer operational: some were shut down
decades ago.

Overall, of the 50 hospital features that we sampled from the USGS gazetteer, only 12 were valid hospitals. 1 he
rest of the 8 features either had incorrect coordinates or were no longer operational. All of these valid hospitals
were found in our output gazetteer; thus, the coverage of our algorithm is 100% with respect to the USGS gazetteer.

Observation 2. 16% of the features in the USGS gazetteer are inaccurate or out of date.
We note that one of the objectives of the USGS gazetteer is to explicitly mark the features that are not

in operation anymore. For example, 6 of the 50 sampled features were explicitly (and correctly so) marked as
historical, e.g., "Martha Washington Hospital (historical)" or "Frank Cuneo Hospital (historical)." Our algorithm
was successful in finding these features on the Web (among 42 matches).

25

Number of features in USGS 94
Number of features in our final gazetteer 259
Features sampled from USGS 50

Total valid features in sample
Feature with inaccurate coordinate
Feature with outdated information

42
2
6

Sampled features from USGS that are available in our gazetteer
Exact match available
A variant name available

42
34

8

Figure 16: Evaluation of our final gazetteer with respect to the USGS gazetteer

Hospital from our gazetteer Whether available in USGS gazetteer

Northwestern Memorial Hospital V
Comer Children's Hospital X

Cook County Hospital V
Saints Mary and Elizabeth Medical Center V
Saint Joseph Hospital V
Illinois Masonic Hospital X

Schwab Rehabilitation Hospital X

Swedish Covenant Hospital V
West Suburban Medical Center V
Neurologic Orthopedic Hospital of Chicago X

Rush University Medical Center X

Loretto Hospital X

Holy Cross Hospital V
Louis A. Weiss Memorial Hospital V
St Anthony Hospital V
Norwegian American Hospital V
Mercy Hospital k. Medical Center V
Mount Sinai Hospital Medical Center V
Chicago Lakeshore Hospital V
Methodist Hospital of Chicago V

Figure 17:
gazetteer.

Evaluation of the coverage of the USGS gazetteer with respect to the top 20 hospitals in our final

We observed that the marking of the historical features is not up to date in the USGS gazetteer. Of the 8
features that our algorithm could not find, 6 represented the hospitals that are no longer in operation (some were
shutdown decades ago). The USGS gazetteer, however, failed to mark them as "historical."

We also found that the coordinates of some of the features in the USGS gazetteer are incorrect. Of the 8
features in the sample set that our algorithm could not find, 2 of them have incorrect coordinates in the USGS
gazetteer. One of these hospitals is located in the state of Pennsylvania, while the other is located in the state of
Massachusetts. In the USGS gazetteer, the coordinates of these two features are incorrectly set as located to be
in the vicinity of Chicago (and that is why they fall within our target geography).

To summarize, the USGS gazetteer has inaccurate or outdated information for 8 out of the 50 sampled features,
i.e., for 16% of the cases. We believe our algorithm could provide great assistance in automatically identifying
entries in the USGS gazetteer that may need correction. If our algorithm could not find a feature from the Web,
that feature in the USGS gazetteer is possibly either out of date or has incorrect coordinates.

Observation 3. The USGS gazetteer covers only 70% of the top 20 features in our final gazetteer.
In another study, we wondered how extensive the coverage of the features in the USGS gazetteer might be. We

took the top 20 features from our final output gazetteer, ranked in the order of the number of sources in which
we found a feature. As shown in Figure 17, the USGS gazetteer does not contain 6 of these 20 features. This

26

Source Name Number of features in final gazetteer

local.yahoo.com 245
maps.google.com 46
www.revolutionhealth.com 41
allhospitals.org 41
ushospitalfinder.com 39
www.hospitalsworldwide.com 39
www.doctordirectory.com 38
www.mchc.com 38
www.dogster.com 33
www.idph.state.il.us 31
www.hospitalcompare.hhs.gov 30
www.vimo.com 25
www.healthcarehiring.com 24
www.cazoodle.com 22
hospitalandmedicalcentercompare.com 21
health.usnews.com 17
www.hospitalsoup.com 10
www.yelp.com 9
alcoholism.about .com 9

32 sources [2, 5] leal ures

137 sources Only 1 feature

Figure 18: Distribution of the number of features extracted from each contributing source.

Figure 19: Distribution of the number of sources from which each of the features were extracted.

indicates that the coverage of the USGS gazetteer is quite poor. We believe that our automatic techniques are
necessary to ensure the completeness of databases such as the USGS gazetteer.

2.7.2 Distribution Statistics

Besides the benchmark evaluation, we also analyzed our final gazetteer to identify the merits of our approach.

Observation 1. Aggregation of content across many sources is necessary.
Our final gazetteer was composed of 259 features that were discovered across 189 Web sources. We analyzed

the contribution of each source, i.e., for each source we studied a fraction of the 259 features that were found at
that source. As Figure 18 shows, the most popular source was yahoo.com, where we were able to find 245 out of
the 259 features. With the exception of this source, the remainder of the sources covered far fewer features. The
second most popular source was google.com, where we were able to find 46 of the 259 features. In fact, a large

27

Features in order of number of sources they were found

Figure 20: Distribution of the number of sources from which each of the features were extracted, after excluding
yahoo, com.

Number of algorithmic results merged manually Number of such entries in final gazetteer
5 2
3 3
4 3
2 6
1 245

Figure 21: Distribution of the number of algorithmic results that were merged manually per entry in the final
gazetteer.

majority of the sources, i.e., 137 out of the 189 sources, contributed only one hospital feature apiece. Only 19
sources contributed more than 5 hospital features.

In another study we analyzed the number of sources in which each of the 259 features were found. As shown
in the distribution in Figure 19, we found that the most popular feature could be found in only 36 out of the 189
contributing sources. A large majority of features, i.e., 165 out of 259 features, were found on only one of the
contributing sources. To avoid confusion, we should note that the specific source in which these 165 features were
found may be different for each of these features.

To remove the skew due to one exceptionally large source (yahoo.com), we also analyzed the distribution after
excluding yahoo.com from our study, i.e., considering only those features that could be found from at least one of
the remaining 188 sources. Of the 259 features, 155 features could be found only on yahoo.com. After excluding
these features from our study, we looked at the distribution for the remainder of the 104 features that could be
found in at least one other source besides yahoo.com. As shown in Figure 20, the most popular feature could be
found from only 35 sources. A vast majority of the features- as many as 49 out of the 104 features-could be found
only in one source, which implies that the only way to generate a complete gazetteer is by aggregating information
discovered across all sources.

Observation 2. The automatic merging technique is effective.
Next, we studied the effectiveness of our automatic merging algorithm by evaluating how much manual effort

was required by the analyst for generating the final output gazetteer. Starting from the results produced by our
automatic techniques, our analysts performed two key manual operations: deletion of the incorrect results and
manually merging results that our algorithm could not merge automatically.

We found that our algorithms for automatic merging were quite effective. Figure 21 shows the distribution of
the number of results produced by our algorithm that were grouped together by the analyst to produce an entry
in the final gazetteer. For instance, the first row shows that there were 2 entries in the final gazetteer for which
our analyst had to manually merge 5 results each. For a large fraction of the gazetteer entries, i.e., 245 out of the
259 features in our final gazetteer, the analyst did not need to perform any manual merging. This indicates that
our algorithm is quite effective in automatically determining which raw records need to be merged.

Observation 3. Manually deleted entries can be automatically filtered by new improvements in the

28

Reason for error Number of results

Address of a hotel 2i5
Other businesses (drugstore, associations, car repair, computer repair) Hi
Incomplete extraction 12
Incorrect association 6
Senior or disability housing 6

Total results deleted by analyst 63

Figure 22: Analysis of the reasons for erroneous entries deleted by analyst.

text extraction module.
Next, we analyzed how much difficulty our analyst faced in deleting erroneous results produced by our algo-

rithm. Of the 351 results produced by our algorithm in the target geography (defined by the bounding box), our
analyst deleted 63 results. The remainder of the results were further merged, finally producing 259 entries in the
output gazetteer. Thus, only about 18% of the results produced by our algorithm were erroneous and therefore
needed to be deleted by our analyst.

We further analyzed the characteristics of these 63 results deleted by our analyst, as summarized in Figure 22.

• We found that 23 of the deleted results represented cases in which a hotel was located at the address of
the candidate feature. We found that many online websites that provide search functions to find hotels
displayed lists of hospitals near those hotels. When we applied our text extraction module to these pages,
we incorrectly associated the address of the hotel with the hospital name on that page. We can enrich
our text extraction technique by segmenting a Web page into units of coherent information and disallowing
associations across different units.

• We found that 16 of the deleted results either represented real-world services whose names were ambiguous,
e.g., "Car Hospital," or "The Computer Health Center," or represented services related to the healthcare
industry, e.g., drugstores, educational institutions, or recruiting agencies for the hospital industry. Our
analyst could very quickly judge that such results were erroneous, thus requiring little overhead. We can also
develop techniques to filter out such results automatically-by first training a language model for the Web
pages representing hospital features, and next, comparing the context of the new Web pages to the trained
model.

• We found that 18 of the deleted results represented cases in which our extraction techniques could be
improved, i.e., either the name of a hospital was incorrectly associated with the address of a different
hospital (6 cases), or the extracted address was incomplete (12 cases). In our implementation of the text
extraction module for the hospital task, we generated all pairs of hospital names and addresses as candidate
records, i.e., a "full-join" of all hospital names and all addresses in a single page as candidate features. We
used the number of web-references by using the number of results returned by search engines for each pair
to compute the score for each. While the scoring scheme already performed reasonably well, we can improve
accuracy by pruning the associations that do not qualify as the tightest pair, e.g., if the text segment between
a candidate pair of a hospital name and an address included another hospital name (or address), then the
pair would not satisfy the tightest binding requirement.

• We found that 6 of the deleted results represented residential housing facilities for senior citizens or people
with disabilities. Often, some of these services also include an adjoining medical facility. Such results are
perhaps best left for the analyst to judge with regards to whether they should be included in the final
gazetteer.

3 Mosque Feature Discovery and Extraction

In the first part of the Phase II work, we attempted to solve concrete feature discovery problems of various types:
man made features {e.g., hospitals, places of worship), natural features {e.g., mountains or lakes), and colloquial
features (e.g., neighborhood boundaries). We focused on two countries: Afghanistan and United States.

29

English Arabk
1 Afghanistan mosque 2,260.000 *»—ja)»4i .460,000

491.000

132.000

65,600

59,900

533

79,800

96

2 mosque firtdei S24.00O ,iV,t- i>M-

3 mosques finder 216,000 JfUJ -J^S-.

4 mosques finder Afghanistan 194,000

ju-flifc -J.JUH jujr

S masjid finder Afghanistan IS. 200

6 holv place Afghanistan 67,400

8 dargah Afghanistan 118,000 ju-iiii U. /a

9 rouse of worship Afghanistan 211.000 jU~i**l iii^ -^ 303,000

10 Network of Mosques (Afghanistan) i 60.000 an—ft>iavil 896.000

Figure 23: Comparison of number of results on google.com for English vs. Arabic queries.

We first studied a series of concrete feature discovery problems, for man-made, natural, and colloquial features
- thus, discovering mosque features is our first concrete problem, in the man-made category of features, after our
development of the hospital discovery system in the interim Phase I Option period.

Phis problem of mosque discovery is quite different from hospital discovery, in two aspects:

1. Language difference. While the hospital discovery system operated on an English language corpus, the
mosque discovery system may need to access foreign language (i.e., Arabic) Web pages.

2. Geography difference. Our hospital discovery task focused in the Chicago metropolitan area, where effective
geo-coding tools are available. How well can these tools adapt to the new target geography of Afghanistan?

Additionally, we worked on the problems of information extraction, feature merging, evaluation, user-aided
analysis and made additional improvements to our aggregation engine.

3.1 Language Difference

3.1.1 Findability Survey for Mosque Information

We studied the language nature of Web pages that will be useful for the discovery of mosque features. For our
survey, we queried google.com with different keywords relevant to our domain of interest. We summarize the
findings as follows:

Observation 1: Mosque information is generally prevalent in both English as well as Arabic pages. We searched
for several "mosque-related" keyword queries, in English as well as their corresponding Arabic translations, on
google.com. In Figure 23, we show the number of results returned for each of these queries. We see that both
English and Arabic queries match a large number of pages. For some queries, we saw a higher result count for
English queries, and vice versa for the others. This phenomenon indicates that mosque information is widely
available in both English and Arabic language corpus.

Observation 2: The information for a specific mosque may be more prevalent in Arabic than in English pages.
We queried google.com with a few specific mosque names as queries. As Figure 24 shows, we found more results in
the Arabic versions than the English versions. This phenomenon indicates that we will likely find more information
in Arabic pages for a particular mosque. Thus, even for mosques (and other associated information) that we could
discover in English-language pages, we will find more information in Arabic pages for further augmentation.

Observation 3: Mosque information is available in both structured Web sites and unstructured text pages. We
inspected a few results for each of our different survey queries. From a total of about 1000 sources thus inspected,
we report the characteristics of a few relevant sources in Figure 25. As we observe, there is a good mix of structured
sources and text pages thus, it indicates the need for the dual-extractor design for this problem as well.

Observation 4: The exact information about the locations of mosques is rarely available. As Figure 25 shows,
the full addresses of mosques are often not available. Some sources only provide city-level addresses, and some
provide "relative" addresses (e.g., 50 km northeast of Sakhu).

30

En|tsh Arabic

1 A) Aqw Mosque 798,000 1.50 00.000

1,060 2 Masjd fj-ghj nj h 60S

i

4

S

6

MasjedJaame Heart 21S -i> £*•**— SI7

836

24

Abdul Rahman Moique 142 "o*»> ** *—"
Masted r Ettlf»q S .*— Vj>£N
Sayed ihuhada motque 5 ".'j^' J^ j»_ " 680

Figure 24: Comparison of number of results on google.com for English and Arabic versions of specific mosque
names.

Site Format Mosque Names Address
islamicjinder.org structured > 10 full address
wikipedia.org lex! > 10 city only
gearthhacks. com structured 1- 10 city only
lib.uwm.edu structured 1 - 10 city only
mfa.gov. af text 1 - 10 city only
archnet. org structured 1- 10 city only
orientalarchitecture. com text 1- 10 no address
ramdan4u.blogspot.com text 1 - 10 city only
allexperts.com text 1- 10 city only
aulia-e-hind.com text 1- 10 city only
5ymah.net text 1- 10 city only
trytop.com text 1-10 no address
afghan-network.net text 1- 10 relative address

Figure 25: Nature of sources providing mosque information.

3.1.2 Text Extractor for Arabic Pages

As our survey above shows, mosque information is quite prevalent in Arabic pages. We thus decided to investigate
how well our extraction techniques can extend to a foreign language like Arabic and to understand what the issues
are. Therefore, we attempted to customize our text extraction techniques to recognize mosque names from Arabic
pages, which were collected from the survey of Arabic keyword queries as just reported. This study would not
be possible without the knowledge of Arabic—we have a colleague who is fluent in the Arabic language, and he
helped us in this exercise. Our lessons from this exercise provided a mixed experience.

Lesson 1. The state-of-the-art language translation tools are not effective for the purpose of information extract ion
across languages. Initially, we thought we could simply translate the Arabic pages to English, and then use our
text extraction tools on the translated pages. We tested the translation effectiveness of Google Translate. First, we
found the response time of the service to be too slow for large scale processing. It took 10-15 seconds to translate
a typical Web page. Secondly, we found the accuracy of translation to be quite limited—it could only translate
some parts of the pages. Our Arabic expert inspected the results and found that the original Arabic pages often
used a variety of local dialects—thus, the translation problem is inherently difficult. As there is active research
going on in natural language processing for the Arabic language (e.g., [1]), we are hopeful that better tools would
soon become available in the future, although currently this translation-then-extraction approach does not seem
viable.

Lesson 2. The parsing module can be easily extended to operate on Arabic text. Although the Arabic language
is quite different in its composition - it is written from right to left, and uses Unicode encoding - our parsing
module could be extended to tokenize Arabic Web pages. We were able to recognize the Arabic word "mosque"
in Arabic pages, and segment the surrounding context of the matching word tokens. Our Arabic expert observed
these segments of the extracted tokens, and found the matches to be fairly accurate.

Lesson 3. The adaptation of extraction rules to Arabic requires much knowledge of the target language. As the
step after segmenting the surrounding context of the Arabic "mosque" keyword, for each such segment, we needed

:ii

language-specific rules for actually recognizing mosque names. For instance, a rule can state if there is "A1-" (the
definite article in the Arabic language) at two or three tokens preceding the "mosque"' keyword, then the character
sequence in between them would be the name of a mosque.

As we realized in our exercise, constructing such rules requires good knowledge of the grammar and conventions
of the target language. Since the issues here are rather language specific, we would leave such customization for
future extension. Meanwhile, better tools for Arabic information extraction will become available, since name
entity recognition for the Arabic language (and various other languages) is actively pursued in research {e.g.,
[45, 46, 72, 88]). Thus, lacking foreign language expertise, we decided that, for our study in the GeoEngine
project, we will focus on developing extraction modules for English corpora.

Lesson 4. The ability to parse Arabic pages can be used for augmenting English-based feature discovery. While
we will not study the extraction of information directly in Arabic pages, we can use these pages to augment the
features discovered from English pages. As we saw in Lesson 2, we could successfully parse and identify desired
tokens in Arabic pages. We can thus use this ability to find pages containing auxiliary information for mosque
names that we discover from an English corpus. These matching pages can be used to augment in the discovery
process.

3.1.3 Language prevalence

A major impact of change in geography from Chicago to Afghanistan is the change in language-from English to
Arabic. We queried google.com to estimate the number of pages, in Arabic vs. in English, that provide mosque
related information. To recap, we queried google.com with the English as well as the Arabic variants of several
mosque related queries. Figure 23 summarizes I he number of results found for 1 1 general queries, while figure 2 I
shows the results for 6 queries with specific mosque names.

Observation 1: There is a good mix of English as well as Arabic language pages providing mosque
information. In general, we observe that the mosque information is prevalent in both the languages. For the
general queries, English corpus is more popular, while for the specific mosque names, Arabic corpus is more
popular.

3.1.4 Nature of sources

To understand the nature of the Arabic sources that are returned in search results for our queries, we inspected
the top 10 results for each of them (or all results for queries where less than 10 results were found). The results
are summarized in Figure 26. We used Google Translate http://translate.google.com to translate these pages
from Arabic to English, for our inspection. If a page could not be translated, we mark it as "GT Failed." Strangely,
we also observed quite a few links were now defunct, marked as "Link Down." A source is classified as "DB" if it
is a structured site, suited for our agent extraction. The rest of the sources are text sources, further classified as
{wiki, travel, news, blogs, org, forum, culture}, depending on their characteristics.

As Figure 26 shows, of the top 10 results for Ql, 1 is Link Down, 1 is GT Failed, and rest of the 8 results are
text sources, with no DB sources. The first 11 rows are for general queries, and the next 6 rows are for the queries
with specific mosque names.

Observation 2: We rarely find structured DB sources in Arabic language. For the general queries,
we never saw any DB sources. For the specific queries, we saw DB sources for 4 out of 6 cases. These 4 results
belonged to Arabic version of 2 structured sources - wikipedia and islamic finder. In addition to this survey, we
inspected many more results for discovery of structured sources. Yet, we could find a total of only 4 structured
sites.

Observation 3: Casual channels are predominant source of information. Of the 165 sources that we
inspected, 50 sources were forum discussions. The second and third most popular information source are blogs
and news sites. Together, forums, blogs and news sites comprise of 104 out of 165 sources.

Observation 4: Language translation does not work on all pages. Google Translate was not successful for
11 of the 165 sources that we inspected.

Observation 5: Some sites are not well maintained. Even though our survey was restricted to the top 10
results, we still saw 13 of the links did not load - either throwing HTTP 404 error, or internal server error.

Thus, the text sources were the major focus for development of GeoEngine for Mosques in Afghanistan.

32

fouery Liki travel news blog org forum DB culture
GT Link II
Failed Down!

Qi 3

Gen

1

eral Queries

l 1 3

Q2 3 6

Q3 1 1 4 l 1
Q4 5 4 1
Q5
Q6

2
1

2 l l
2

2
2 3

Q7 3 2 1 1
Q8 1 4 l 1 1
Q9 1 1 2
Q10 4 3 1 1
Qll

Q12 3

3 1 4
ries

2 l

1

2

1
Specific

1
Mosque Que

Q13 2 1 1 2 1 l 1
Q14 2 2 5 1
Q15 2 l 1 1 2 1 l 1
Q16 3 4 2 1
Q17 1 2 4 2 1
Total 165 „.

11
pages

10 26 28 1 50 5 7 14 13

Figure 26: Study of the nature of top 10 results for mosque related queries.

3.1.5 Language translation

Observation 6: The languages spoken in Afghanistan are not directly supported by state-of-the-
art translation tools. While the language translation tools support Arabic to English translation, Afghanistan
uses other languages, which limits the accuracy of translation services. The two most popular dialects are Dari
(also called Farsi) and Pashto (also called Persian), used 50% and 35% respectively. While both of them use
Arabic alphabet, they differ considerably from original Arabic language. The other popular languages are Turkic
languages (Uzbek and Turkmen) and several minor ones, e.g., Baluchi, Pashai, Nuristani, etc..

Observation 7: The approach of translate-then-extract is not viable for Arabic corpus. We found
two good resources for Arabic to English translation- Systran and Google Translate, and the later seems to be the
better. However, due to variations in local dialects (as noted in Observation 6), sometimes large parts of the text
could not be translated (as seen in Observation 4). Due to these limitations, the translate-then-extract approach
does not seem viable currently.

We also conducted a "fun" experiment to use Google Translate to translate names of a few mosques from English
to Arabic, and then back to English. The results, as summarized in Figure 27, show some funny translations, e.g.,
"Friday Mosque of Herat'' becomes "A mosque on Friday in Herat," or, "Pul-e-Khishti Mosque" becomes "E, in a
mosque Khishti." These examples also illustrate the inherent limitation of the state-of-the-art tools.

Observation 8: Adaptation of text extraction modules for Arabic corpus requires much language

33

Original English name

Puli Kheshtee Mosque

Masjid i Khwaja Abu
Nasr-i-Parsa

Masjide farghanah

AL-JIHAD MOSQUE

CENTRAL JAMIE MOSQUE

Masjed Jameh shahri

Masjid Jamee Taluqan

Abdul Rahman Mosque

Friday Mosque of Herat

Green Mosque

Haji Piyada

Khost Mosque

LashkarGah Mosque

Mosque of the Hair of the
Prophet

Pul-e Khishti Mosque

Shrine of Hazrat Ali

Id Gah Mosque

Khwaja 'Abd Allah Ansari
shrine

Translated Arabic Name

^M Kheshtee •>>

U. JL Ja I j- ajU yi\ ^ —- ->l ^ Ja

Masjide farghanah

-W1

JI jii^ ^j*i~* ^>"'*

f1*^^1

^.UjlSjIU

, JJC J»*jpl

.JJiA^Jl^-u^

il^^aiJl

?J^ Piyada

»lS jS.'-l .13

^ --•' jf* juJLl •'•'*

Khishti

i »j-—ik
sflc

IxljL JJC *il ^jL^iVI jl>•

Reversely translate to English

Poly Kheshtee mosque

I Khwaja Abu al-Nasr mosque, i Parsa

Masjide farghanah

Jihad Mosque

Jimmy Central Mosque

Mosque Mosque monthly

Mosque Mosque Taloqan

Abdel Rahman mosque

A mosque on Friday in Herat

Green Mosque

Haji Piyada

Khost Mosque

Lashkar Gah Mosque

Mosque of the hair of the Prophet

£, in a mosque Khishti

The shrine of Hazrat Ali

ID Gah Mosque

Figure 27: Results of Google Translate from mosque names in English to Arabic to English.

insight. Having observed the difficulty in language translation, we explored the direction of extending our text
extraction modules directly into Arabic corpus. Our experience was mixed while it is technically possible to extend
our tools to work on foreign language corpus, the adaptation requires much insight into Arabic language alphabet,
syllable, vocabulary, and grammar.

Thus, for our development, we will focus only on English corpus pages, leaving Arabic corpus to be incorporated
in future, as better translation tools become available.

3.2 Information Extraction

3.2.1 Information availability: Chicago vs. Afghanistan

With our focus on English corpus, next we wanted to zoom deeper to understand what type of information is
available on the Web for mosques in Chicago vs. mosques in Afghanistan.

For our study, we used 5 popular mosques in Chicago and Afghanistan, each, and designed two experiments.
As our first experiment, we queried google.com for the specific mosque names and noted the number of matching
results, as shown in Figure 28. These numbers are indicative of number of web pages providing information relevant
to that mosque.

Observation 9. The number of web pages providing mosque information is far greater for mosques

34

Geography Mosque Name Result Count

Chicago

Mohammad Islamic Corporation
As-Salaam Center
Roscoe Mosque
Alsalm Mosque Foundation
Makki Masjid Incorporated

65
109
293
128
65

Afghanistan

Ibrahim Shah Baba Shrine
Dara Herat Mosque
Khost Mosque
Friday Mosque
Lashkar Gah Mosque

6
2

590
64,500

234

Figure 28: Information availability: Contrasting number of results found on google.com for 5 mosques in Chicago
and Afghanistan, each.

1 Name city Address Prayer Picture Phone 1
time 1

As-Salaam Center Yes Yes Yes Yes Yes

Roscoe Mosque Yes Yes No Yes No

Alsalm Mosque
Foundation

Makki Masjid
Incorporated

Yes

Yes

Yes No No Yes

Yes No No Yes

Yes No No Yes Muhammad Islamic
Corporation

Yes

Figure 29: Availability of information for mosques in Chicago.

in Chicago compared, to mosques in Afghanistan. As summarized in Figure 28, we see far more results for
mosques in Chicago compared to mosques in Afghanistan. The only exception is "Friday Mosque,-' for which we
get high number of results at 64, 500; however, this is a quite common mosque name, with many cities around the
world having a mosque with this name (see the wikipedia article 2for more info).

As our second experiment for the information availability, we tried to understand what type of information
can we find for mosques on the Web. In particular, for the same 5 mosques in Chicago and in Afghanistan, our
human experts manually tried to find-(#city, #address, #prayer-times, #pictures, #phone). The results for Chicago
and Afghanistan are shown in Figure 29 and Figure 30, respectively.

Observation 10. The phone number and street addresses are rarely available for mosques in
Afghanistan, while commonly available for mosques in Chicago. As summarized in Figure 31, phone
number could not be found for any of the 5 mosques in Afghanistan, while could be found for 4 out of 5 mosques
in Chicago. Also, the street address could be found for only 1 out of 5 mosques in Afghanistan, while it was easily
discovered for all 5 mosques in Chicago.

This observation implies new challenges for our Mosque in Afghanistan system-On the one hand, we need to
simplify our goal to discover only #city level coordinates for a mosque. On the other hand, we need to design new
geo-integration technique since the integration technique used in Mosques in Chicago system relies on the street
address, phone number and exact geo-coordinates.

Observation 11. Surprisingly, the pictures are more commonly available for mosques in Afghanistan
as compared to mosques in Chicago. As we see from Figure 31, pictures could be found for 4 out of 5 mosques
in Afghanistan, while for only 2 out of 5 mosques in Chicago. This indicates photo sharing sites could be useful
for our development.

1 http://en. wikipedia. org/wiki/Priday-Mosque

;i.r>

1 Name City Address Prayer
time

Pictures Phone 1

Ibrahim Shah Baba Yes No No Yes No
Shrine

Dara Herat Mosque Yes Yes No No No

Khost Mosque Yes No No Yes No

Friday Mosque Yes No No Yes No

Lashkar Gah Yes No No Yes No
Mosque

Figure 30: Availability of information for mosques in Afghanistan.

1 1 city Address Prayer time Picture | Phone]

Chicago

Afghanistan

5/5 5/5 1/5 2/5 4/5

0/5 5/5 1/5 0/5 4/5

Figure 31: Contrast of availability of information for mosques in Chicago vs. in Afghanistan.

3.2.2 Geocoding accuracy

As our final dimension of survey for change in geography, we studied how well the geocoding services that we use
(Google Maps and Yahoo Maps) work for Afghanistan, our new target geography.

Observation 12. The geocoding services are not capable of geocoding street addresses in Afghanistan.
Although, it is hard to find street addresses for mosques in Afghanistan (as noted in observation 10), we could find
the addresses for 3 mosques, as listed in Figure 32. We could not successfully geocode these these street addresses
using either Google or Yahoo. Google returned empty results for all the 3 test cases; Yahoo returned city level
geocodes for the 3 test cases.

Observation 13. The geocoding services are not capable of geocoding even the city names in
Afghanistan. We used NGA for AF as reference DB, and evaluated how well the geocoding service from Google
can support the cities in NGA. The findings are summarized in Figure 33. We sampled 200 features from NGA.
For each feature, we queried the geocoding service with pattern "{city-name}, Afghanistan." We found Google
could geocode only 59 of the 200 city names, returning empty results for rest of the 70% queries. Furthermore,
even for these 59 cases where geocoding was successful, the distance between the coordinates returned by Google
vs. NGA were more than 10 miles away for 41 cases. In fact, for 2 cases, the geocodes returned were outside
Afghanistan (Pakistan for both).

3.3 Text Extraction

The design of text extractor, as illustrated in Figure 34 on a page from wikipedia, involves three steps: (a)
City Name Annotation to locate mentions of the Afghanistan cities on that page, e.g.. "Kabul Bazaar" (CM),
"Kandahar" (C2), etc., (b) Mosque Name Extraction to recognize the names of the mosques, e.g., "Mosque of the
Hair of the Prophet" (Ml), or "Jame Mui Mobarak" (M2), etc. and (c) Mosque Tuple Assembly to combine the
instances of mosque names (Ml, M2, etc.) and city names (Cl, C2, etc.) to produce mosque tuples of the form
(#mosque-name, #city).

36

Address
Google Google Google
Place Lat Lng

Yahoo Place
Yahoo
Lat

Yahoo
Lng

Jadde lilamiha, Herat, Herat 009340, AFGHANISTAN

Masjid i Khwaja Abu-Nasr-i-Parsa
the center of Balkh City, Balkh, AFGHANISTAN

0.00 0.00

0.00 0.00

Herat,
Afghanistan, AF
Balkh,
Afghanistan, AF

34.35

3675

6219

66.90

District 7 Kabul ChaharDihi, Kabul, Kabul, AFGHANISTAN 0.00 0.00 .*b"'' .
Afghanistan, AF

34.53 6914

Figure 32: Performance of Geocoding services in supporting street addresses in Afghanistan.

Features sampled from NGA 200
Geocoding returned empty result 141 (70.5%)
Certainly incorrect geocode
(distance between geocodes and NGA > 10 miles 41 (20.5%)
Possibly correct geocode (distance < 10 miles) 18 (9%)

Figure 33: Performance of Google geocoding service in geocoding Afghanistan cities.

3.3.1 City Name Annotation

We used NGA Gazetteer of Afghanistan to obtain the list of all cities in Afghanistan. As learned from our survey,
full street addresses are rarely available; so our module of regular expression based address recognition, that we
used in our Hospital in Chicago system, is not applicable here. Using the list from NGA Gazetteer, we used CATK
annotator to mark-up all the instances; and used Lucene to create inverted-index for easy access to the annotated
entries.

3.3.2 Mosque Name Extraction

Our module for Hospital Name Extraction could be easily adapted to this new task. The method is based on
defining a "state machine" as follows:

1. Look for key terms. We parsed the HTML string of the web pages to obtain clean text string. In this text
string, we looked for terms in a manually compiled list of MosqueTerms = {"mosque," "masjid," "shrine"}.

2. Prune tokens beyond name boundary. We considered the tokens in the surrounding context of the key terms
(up to 5 token positions) as potential mosque name. Within this sequence of tokens, going away from the
occurrence of key term, we look for special tokens that indicate the boundary of mosque names stop words
(e.g., of, an, the, etc.), or punctuations [e.g., ., ! etc.), or digits, or verbs. Currently, we populate the the list
of "name boundary" tokens manually; we hope to incorporate natural language annotation tools to help in
simplifying this process.

3. Accept under special contexts. We identify some cases that are exceptions to the "name boundary" step, by
checking the context around the name boundary tokens. That is, we recognize that some boundary tokens
may not indicate name boundary under special situations of the surrounding context. For example, if the
stop word is "of" and the token before it is another key term (e.g., "mosque"), then we do not treat "of" as
the name boundary (e.g., in case of, "the mosque of the hair of prophet").

3.3.3 Mosque Tuples Assembly

Having extracted the list of mosque names (e.g., Ml, M2, ...) and the list of city names (e.g., Cl, C2, ...),
our next step is to determine which of the "candidate tuples" (obtained as cross-join of the two lists) represent
meaningful association.

1. Proximity-based Scoring

While the potential number of candidate tuples are huge, to determine which of the candidate associations
are meaningful, we use the EntityRank technique, which we developed in prior research in the WISDM

37

Mtt» a dotstio* to Wiktpedti arxig/ve the gift of kr>owiedge<

<ntkle discussion edit this page history

Mosque of the Hair of the Prophet
From Wikipedia, the free encyclopedia

The Mosque of the Hail of the Piophet, also

known as J.ime Mui Moh.u.ik, is a mosque near

the Kabul Bazaar, in the city of Kandahar,
Afghanistan

The mosque was built in the 19th century by

V ohendil Khan.'' A canal runs through the mosque's Piovwxe

shaded courtyard pl At one point, there was a

traveler's rest house there p|

TryB
Mosque

Name
Extraction

City Name
Extraction

Ml, M2, M3, ... Cl, C2,...

Mosque Tuple Assembly

T
city mosque context:
Kabul BazaaHosque of the Hair oKabul, Kanda
Kandahar Mosque of the Hair oKabul, Kanda
Kandahar Jame Hui Hobarak Kabul, Kanda

Figure 34: The design overview of Text Extractor for unstructured pages.

0 OS

OOB

0.07

not

a n
O 0 04

Span Probability Estimation

Raw Span Prob
- - Filled Span Prob

1 I \i II ' ' '. •• I •

•••••--•

20 30 40 50
Span

70 80 SO 100

Figure 35: The span proximity model: Associating probability vs. span distance.

project ([55, 56, 57]) at the University of Illinois, and also used in our Phase 1 task of finding population. As
a generic mechanism, EntityRank essentially explores the proximity of participating entity instances to score
their association into tuples. To quantify proximity, we measure the span of the entity instances' occurrence
positions, i.e., the length of a window (in terms of the number of words) that covers all of them. While this
proximity is an intuitive heuristic, to illustrate, we empirically measure the probability of manually-labeled
associations versus span distances, for real world tuples like companies and their service phone numbers, e.g.,
(IBM, 877-426-2223), over a real Web corpus. As Figure 35 displays, the association probability diminishes
as the distance increases, which is nearly zero when the distance is greater than 100 words apart. We thus
quantify the score of a potential tuple by the span of terms (the closer, the better) and the exact scoring can
be empirically determined, much like what Figure 35 sketches.

2. Geo-Specialized Scoring.

(a) Tightest-tuple Binding.

Besides the generic EntityRank, we also enforced tightest binding of entities. More specifically, a
candidate tuple (#mosque-name, #city) is valid only if there are no occurrences of other #mosque-name
or #city instances between these tokens.

(b) City-list Filtering

We also observed that several tuples being generated from our system were not meaningful as the city
name were too generic words in English language. Some of the most frequent cities in our results

38

Mosque Name Ambiguity Reason Example Website
http://www.historycommons.org/entity.jsp?entity=
finsbury_park_mosque_l

Finsbury park Mosque . in London

Lai Masjid in Pakistan http://imran.cora/media/blog/labels/Mosque.html
Babri Masjid ... in India http://medlibrary.org/medwiki/Mosque
Less popular mosque . in news stories http://www.france24.com/en/

20090528-iran-mosque-suicide-attack-kills-zahedan
http://www.globaltv.com/globaltv/winnipeg/
Suicide+bomb+kills+Pakistani+mosque/1434854/
story.html

Less popular mosque ... in community sites http://www.cybercity-online.net/Pakistan/html/
shrines_tombs mosquesinpak.html

Figure 36: Example results illustrating AF vs. non-AF ambiguity.

included monday, march, or, top, main, want, taliban, taleban, hindu, burma, china, masjid, park since
there are cities in NGA Gazetteer for Afghanistan with these names. An ideal solution here would be to
disambiguate if occurrence of these terms; however, in our current implementation, we simply compiled
a "stop-list" of city names, like above, that are more likely to be used as generic term rather than as a
city name, and removed the tuples for which city name belongs to this stop-list.

3.3.4 Large-scale Crawling

Having designed our technical components, to deliver the final system, we need to deploy our text extractor onto
large scale of Web corpus. Our objective here is to prepare a corpus containing pages relevant to information
about mosques in Afghanistan. We took following two methods to obtain these pages:

1. Focus Crawling. We started by obtaining the top 1000 results from MSN Live search engine for the general
query "mosques in Afghanistan." We dispatched our focus crawling program to crawl pages at depth of 1, 2
and 3 from these initial URLs.

2. Direct Discovery. In addition to the indirect approach of deeper crawling from initial relevant pages in above
method, we also attempted to discover the relevant pages directly. We used NGA Gazetteer for Afghanistan
to drive our direct discovery of relevant pages. For every city in the gazetteer, we queried MSN Live search
engine with the query patterns of "+mosque #city Afghanistan," and "+masjid #city Afghanistan." For each
query, we obtained maximum up to top 1000 results. Note that, for many of these queries we had fewer than
1000 results available; for these cases, we obtained all the available results. Together, this method provided
us a pretty extensive list of pages having mosque information relevant to any city in Afghanistan.

3.4 Merging Mosque Features

('pun the raw results extracted from Text Kxtractor module, we need to apply GtoMerging step to group the raw
records referring to same mosque feature into a merged record. The final score for the merged results are computed
as the sum of the scores of individual raw mosque records, similar to our implementation for previous GeoEngine
tasks. During the merging step, our system needs to handle several forms of ambiguities, as described below.

3.4.1 Ambiguity due to AF vs. non-AF context

While our crawling attempts to collect the pages relevant to mosque information in Afghanistan, we still include
many pages that are ambiguous. As a result, many of the tuples obtained from our text extractor were not in
Afghanistan. Figure 36 shows some illustrative results that we need to filter out, as they are not in Afghanistan.
For example, one of the most frequently extracted mosque was "Finsbury park Mosque" which is London. It is
mentioned in many pages on the Web, due to its extensive media coverage in recent times. However, our text
extractor incorrectly assembles this mosque name with a city in Afghanistan mentioned on the same page. Some
other examples include "Lai Masjid" in Pakistan, and "Babri Masjid" in India. We found that these type of
ambiguous tuples come from variety of pages-from cultural pages, news articles, etc.

39

To filter out these results, we extract additional context in our text extractor, that help us in disambiguate if
the content of the page is really about Afghanistan or not.

NonAFScore For each page, we computed a score that indicates if the content of the page is not about
Afghanistan. The score is computed by counting the number of mentions of terms in "nonAF" list," which is
a manually compiled list of foreign countries, e.g., "USA," "Pakistan," "Oman," "Sudan," "Iran," etc. and some
popular foreign cities, e.g., "Mecca," "Islamabad," etc. We also included "personification" variants for some of
the location names, e.g., "Pakistani," "Iraqi," etc. It is important to note that the list is not exhaustive-we in-
cluded only those locations that are likely to make our mosque tuple extraction ambiguous. For example, we did
not include country "Brazil" in our list; consider a page which mentions "Brazil," a mosque name, and also, a
city in Afghanistan-quite likely, the mosque name mentioned in that page is really associated with that city in
Afghanistan, rather than with Brazil.

AFScore Likewise, for each page, we computed a score that indicates how likely the content of the page is about
Afghanistan, by counting the number of mentions of terms in "AF list." This list contains the country name
"Afghanistan" and its "personification" variants, e.g., "Afghan," "Afghani," and "Afghanistani."

Resolving AF vs. NonAF Ambiguity Based on the two scores-AFScore and the NonAFScore we determined
if the tuples extracted from a page are about Afghanistan or not. If either NonAFScore > 5, or AFScore <
NonAFScore, then we considered the page to be not about Afghanistan, and filtered the tuples extracted from
these pages.

We did not rigorously evaluate these filtering conditions; however, in our experience, they seemed to work
well, except for a few situations where our criteria may incorrectly filter out pages that are about Afghanistan
such as (a) If the page has a story connecting to many countries, e.g., a news story about an incidence in a
mosque in Afghanistan, citing comments from officials from USA and Pakistan (http://www.earthtimes.org/
articles/show/269069,insurgents-rocket-hits-afghan-mosque-killing-iive.html), or(b) If the page in-
cludes mentions of "foreign" locations in sections not related to the actual story, e.g., a news story which refer-
ences only locations in Afghanistan; however, the page includes a selection box containing list of all countries
(http://www.irinnews.org/report.aspx?reportid=28652).

3.4.2 Ambiguity due to different features with same city name

The second ambiguity arises when merging raw records into merged results of unique mosque features. Our text
extractor returns tuples of the format (#mosque-name, #city): now, in our reference NCA Gazetteer, there could
be multiple features with same city name. So, we cannot merge the raw records, by only matching the value of
#city.

Our solution to resolving this form of ambiguity is inspired by our experience of addressing this challenge during
Phase I problem of finding population. When extracting the mosque tuples, in our text extractors, we augment
the tuple with additional context information. More specifically, to understand the context of a city, we extract
the other city names in that page. When merging two raw records, we compare the context of their co-occurring
city names. The records can be merged together, only if the overlap between the two city list are greater than a
threshold. In our implementation, as threshold, we require that at least 5 cities, as absolute count, and at least
20% of the entries, as fractional overlap, should be common between the city-list context of the two raw records.

3.4.3 Ambiguity due to variants in mosque names

Another challenge in merging raw records from text extractor is the variation in the names of same geo-feature.
For example, the same mosque feature may be referenced with multiple names, e.g., "Masjid Sabz" and "Green
Mosque" both refer to the same mosque in the city of Balkh, Afghanistan.

To handle the variations in mosque names, we developed customized functions to judge if two mosque names
are similar. First, we prepare a list of "stop-words" used in mosque names including popular tokens, e.g., "the,"
"a," "of," etc., and common nouns representing synonyms of mosque, e.g., "mosque," "masjid," "shrine," etc..
This first step can be considered as "stemming" for mosque names. Second, upon the key terms remaining after
stemming, we compute the token level edit-distance. We use the inverse of this edit distance as the measure of
similarity between mosque names. If the similarity score is above certain threshold, we consider the two names as
the variant of same mosque.

10

3.5 Performance Evaluation

To evaluate "Afghanistan Mosque Discovery" system, we performed precision and recall analysis; identified possible
reasons for errors and proposed solutions. Additionally, we studied the distribution of merged records to further
understand domain characteristics that we observed.

3.5.1 Precision Analysis - Reasons for Errors and Possible Improvements

From the 3816 merged results, we sampled the top 60 records, and manually evaluated each, in order to assess the
approach and to gain insight of potential improvement. Therefore, for each record, we not only checked whether
the association is correct but also identify the reasons of errors. Figure 37 shows this categorization of the results.
We identified nine categories: EI-E6 are wrong associations of various reasons, A\ and ,42 are acceptable, results
with minor error, and G) is good results. Overall, the precision measuring those acceptable and good results is
48.4%—and we observed valuable insight for improving the results. In the following, we discuss each category,
and how the results could be improved.

El: Mosque name and city name were overlapping. In Text Extractor, we currently allow extracting #city
and #mosque names from an overlapping piece of text, resulting in errors when the city mentioned in a mosque
name is not the actual city. For example, from the text "... Ibrahim Shah Baba Shrine ...," we extracted #mosque
as "Ibrahim Shah Baba Shrine" and #city as Baba, since Baba is in the list of city names to recognize— however,
the correct city of this mosque is Qalechah. As another example, we extracted (Haji Yacob Mosque, Haji), which
should be (Haji Yacob Mosque, Kabul) instead.

How to fix this type of errors? In extraction, we can require that a #city does not get extracted from part of a
#mosque—In general, we should extract a segment of text as either #mosque or #city, but not both.

E2: Mosque names in forward context were ignored. We currently discover #mosque name using backward
context only, i.e., where the key mosque terms like "Mosque" or "Shrine" appear at the end of a name, such as
"Haji Yacob Mosque." Thus, names that starts with the key terms, such as "Mosque of the Cloak of the Prophet
Mohammed," where the name appears in the forward context of the keyword "Mosque," are not extracted properly.
(Another example: "Shrine of Hazart Ali.") In such cases, we extracted it as only "Mosque" or "* Mosque," where
* is the word immediately preceding "Mosque."

How to fix this type of errors? We need to extend our mosque name extraction to look for mosque names not
only in the backward context of key terms, but also in their forward context.

Category Description/Reasons of Errors #Cases Percentage

El City name should not overlap with mosque name 8 13.3%

E2 Mosque name should be extracted using forward context 1 1.7%

E3 City name confused with a foreign city 2 3.3%

E4 Should not associate with non-informative segments 13 21.6%

E5 Should section text to infer association 2 3.3%

E6 City name is confused with person name 5 8.3%

Need-Improvement Total 31 51.6%

Al Acceptable: Part of the mosque name is not right 2 3.3%

A2 Acceptable: Wrong association, but low rank 1 1.6%

G Good association 26 43.3%

Acceptable/Good Total 29 48.4%

Figure 37: Evaluation of mosque discovery: over top 60 results.

II

E3: Foreign cities were not recognized. We do not currently distinguish cities of the same names but in
different countries- the geo disambiguation problem. As we discussed in the Phase I project, when we studied
finding populations for Benin features, a name can refer to multiple locations; e.g., Gando is a name for 12 UFIs.
Thus, when searching for a specific location, say Gando with UFI=-1333543, GeoEngine cannot simply match by
the name alone; rather, it must take measures to disambiguate whether the name refers to the particular location
we seek. This toponym resolution problem has been actively studied (e.g., [42, 60, 73, 76, 77, 78, 79, 82, 86, 89, 101])
for various settings such as video, speech, text, and the Web.

How to fix this type of errors? While we studied the same geo disambiguation problem in the context of
augmenting an existing gazetteer (adding Benin populations to the NGA Gazetteer), now, we do not have a
gazetteer to start with for the various features (e.g., the different "Gando") that may be ambiguous. That is,
since our #city extraction is only based on cities in Afghanistan, we are current unable to distinguish those city
names that also appear in other countries. As a solution, we will add city gazetteer information for other Arabic
countries, in order to distinguish Afghanistan cities.

E4: Mosque and city were associated across separate regions. A page is usually divided into mul-
tiple regions (navigation, content, advertisement), and each regions further divided into different sub-regions
of information units like sentences, records, and links. In this category, we incorrectly associated a #mosque
with #city, while they appeared in unrelated regions of the page. For example, Figure 38 shows a snippet
of navigation links section at the bottom of the page on urikipedia about "Abdul Rahman Mosque" (http:
//en.wikipedia.org/wiki/Abdul_Ralimaii_Mosque). In this snippet, we extracted #mosque from one navigation
link (as marked in the circle) and #city from the following link (as marked in the rectangle). Clearly, while close,
the information across two distinct navigation links should not be associated—i.e., proximity is not a sufficient
condition for tuple association.

How to fix this type of errors? In forming associations, we should consider proximity only within a region
of information, and not across two regions that are independent, even when they appear close to one another in
the overall page layout. First, we will need to segment pages into sub-units [52, 53]; and then, apply our tuple
association algorithm on the content within each sub-unit of a page.

E5: Long range associations were not assembled. In this category, we failed to associate a #mosque and
a #city entity because they were not close to each other. While we have focused on text proximity as a primary
means for assembling tuples, we observed that some prominent associations are not limited to proximity—i.e., we
are missing "long range" associations. Thus, proximity is not a necessary condition for tuple association.

How to fix this type of errors? It is important to note that proximity is simply a measure of the "scope" of
information If a #mosque is near a #city in terms of textual distance, we presume that the former is within the
scope of the latter (or vice versa). In general, we shall consider the "scoping" of text, i.e., the range of influence—If
an information entity is in the scope of another, we can associate them as a tuple, while not necessarily in textual
proximity to each other. For example, information appearing in the title of a page describes the whole page, and
thus it naturally has the entire page as scope. We should generalize proximity to account for such scoping in order
to assemble long range associations.

E6: Person mentions were mistaken as city names. There are many names commonly used for both person
and location. This type of errors thus resulted from wrongly extracting person name mentions as #city (which
were then associated with some #mosque). For example, we assembled tuple (Sect's Mosque, Yusuf): however, this
Yusuf was referring a person in the extracted text, although it is also a city name in our dictionary for extracting
cities. Another example is the merged record number 26, where "Tamim-E-Ansar Mosque" is group with Qari. (a
city name), while in fact Qari is a person's name, as in "Mullah Qari Mushtaq".

How to fix this type of errors? We need to distinguish these two entity types so that we do not group mosque
name with person name (even when another city name is nearby in the surrounding).

Rahman —— • Friday Mosqueof Herat • Green Moaqua (BalMi) • Haf Ptyada ^iQart Mcsquy-jtO^MosQus •

Kh weja AtxJ Allah Anaari ahrlne • Laahkai Qah Moaqua • Moaqua of the Cloak of thePropKiTMoharnmed •

Moaqua of «r» Hair of the Prophet • Pule KhehtJ Mosque • Shah Do Shamerara Moaqua • Shme of Hazrai All

Category - taken ei Afghanistan - Mosques by oountry

Figure 38: Example snippet of a page where #mosque and #city appear in navigation links.

12

Mosque Name City Name # Tuples
Abdul Rahman Mosque Kabul 3
Friday Mosque of Herat Herat 41
Green Mosque Balkh 4
Haji Piyada
Id Gah Mosque

Balkh
Kabul

1
5

Khost Mosque Khost 2
Khwaja 'Abd Allah Ansari Shrine Herat 2
Lashkar Gah Mosque Lashkar Gah 1
Mosque of the Cloak of the Prophet Mohammed Kandahar 0
Mosque of the Hair of the Prophet Mohammed Kandahar 0
Pul-e Khishti Mosque Kabul 3
Shah-Do Shamshira Mosque Kabul 5
Shrine of Hazrat Ali Mazar (>

Figure 39: Recall study of mosque tuple assembly.

Al: Part of the mosque name is not right. There are many cases where mosque name is extracted wrongly.
In some cases, mosque name extraction module spanned more tokens than desired. In other cases, it missed
to include some of the words into the mosque's name. For example, in merged record number 44 (http: //
www.clovekvtisni.cz/index2en.php?parent=&sid=&id=402&idGallery=21), "Author Ladislav Kudlacek Blue
Mosque" is identified as mosque name. However, the correct name should have been "Blue Mosque" in this case.

How to fix this type of errors? We need to improve our mosque name extraction by adding more features to
identify tokens that should act as boundary of mosque names, when going backward (or forward) in context from
key terms. Specifically, we can consider other information such as case-sensitivity and special symbol, beyond our
current implementation of using stop word lists, punctuations, and digits as name boundaries. In the example
mentioned above, we can use HTML br tag, to act as a potential entity boundary and extract "Blue Mosque" as
mosque name correctly.

A2: Wrong association, but lower rank than correct association. In current system, we showed all the
potentially merged mosques in ranked order. As a result, the same mosque could be associated with different
cities. For example, in merged mosques number 55 and 40, Hanzala Mosque is associated with Shahr and Kabul
respectively. The correct association in this case is the one with lower rank.

How to fix this type of errors? One possible method to get correct results is to prune out same-mosque-name
records with lower rank. This method, however, is quite extreme and sensitive in the sense that it might delete
good associations. Another possible improvement is to group results with common mosque name together and
present all of them to system operator for close inspection.

3.5.2 Recall Analysis - Coverage of Tuples Discovered

In order to perform recall analysis, we decided to match our results with information from a trusted source to
see what percentage of data we can cover. However, Afghanistan mosque information has never been formally
assembled together before. The closest effort is from IslamicFinder, and it has only 10 records, out of them
only 7 contain mosque information. Therefore, we picked Wikipedia, a source with information of 13 mosques, as
ground truth to compare against. Given a mosque name in these 13 mosques, we checked if there existed a correct
association in merged results. The results are summarized in Figure 39. The ^Tuples column indicates how many
merged tuples cover the corresponding association of mosque name and city name.

As shown in Figure 39, the final recall is 11/13, about 84.62%. For the two cases where there's no covering t uples,
it is due to the fact that our current implementation of mosque name extraction is not capable of recognizing these
mosque names. As discussed earlier in case E2 in precision analysis, we will extend our mosque name extraction
to include not only backward context, but also the forward context of the key terms.

13

CjSQo-k iLmiL.1*
CuHunandPiopt*

l.~lf.l Win*. Hm^fr*Mfl«fU llllll^» mow

t« t*W«J Wl

19) M ***««K^4mM»«t->H*>.*''

-.~».. .«..»....~*^.ll~

 ~—
-

Figure 40: Illustration of user assistance in correcting record merging.

3.6 User in the loop

It is important to note that, the problem of geo-merging is inherently more difficult for the task of finding Mosques
in Afghanistan, when compared to the problem of finding Hospitals in Chicago. In case of Afghanistan, the geo-
coordinates of the extracted tuples are available at the granularity of the city names. In contrast, for Chicago
tasks, we had full street addresses available. And so, even if the names of the hospitals were totally different, we
could still merge the records based on their geo-coordinates. For example, using our algorithm, we cannot merge
the two mosque tuples with mosque names as "Masjid Sabz" and "Green Mosque,"' since we only know they are
both in Balkh city; we do not know their specific location inside the Balkh city. In contrast, for Hospitals in
Chicago task, we could merge hospitals with names as "Cook County Hospital" and "John H. Stroger Memorial
Hospital,'- since their full street addresses were exactly the same.

This motivates us to involve analysts who are using our operation console in the loop of discovering mosques
in Afghanistan, more than in the discovery of hospitals in Chicago. Besides showing the confident merges, as
determined by the threshold conditions for mosque geo-integration, we also prepare "potential" merges. Alongside
each merged result, we also list all the other raw records, that fall short of our threshold conditions; however,
still likely to be candidates for merging. Analysts can then inspect these potential merges and decide if these raw
records should be merged as well.

3.6.1 Operation Console

Similar to our prior systems, our target user of the system is an analyst who can browse and inspect through the
candidate results, and make final decisions of adding the new features to the gazetteers. Therefore, our design of
the Mosque in Afghanistan system, as shown in Figure 41, also uses similar layout in 3 vertical panels: a) The left
panel is for querying and browsing the discovered mosque features, b) The middle panel is for showing the mosque
results matching search conditions, c) The right panel is for browsing and examining each related link from the
result s.

First, the query and browsing panel allows users to easily navigate through different mosque features discovered
by our system. The panel consists of 3 horizontal sections. At the top, it provides a query form for searching

11

f • Mo-qut Ducowry Sytt ^^

*• C il 6 ". geoenglne cazoodle com r n

Cirt«om(MLr*i :F»B«Hotm*H , Widows MarVHp!.. .J WtTdOWMKto .J WhdDWl

^^laawEngK! H H--i.il <.•„.,

 — wow 5 •* amni

I * 1 »•»] Splint | Hybf.d UshawnalfaJinflB

.i «-c 0.1

Mirgad RecorQ*

Mm* Cly 5cm* MHIHX

WlK.PF.Dl A
tlrJfcaajaTjMay

navigMon

S.Herat G Graan Metf/M
\ Crty Balkh
\ Scofi:0.B

Tlii* aricla «°aaa nat cha any
• afaraitcaa at aawcaa Plaaaa
halp m prowl •> i. .c • > bf aftOing
citatior s to rahabai aourcaa
Unsouicad matanai may t>a
chaRarojad and lemovart i
Way

Save to qa/altar

II r Hi I M. .l>f.

Cay NiHaia
Store 0.7S

C% aWnlRalniien

Thi Haa|ia- Sear oi Grei
BeHn, m northern Atyiin

References

• in lha cay of

M

Figure 41: The operation console of CeoEngine for discovery of Mosque in Afghanistan.

mosque by mosque-name or by city. The middle section provides integration with a map, for users to visualize the
location of the matching mosques. The bottom section lets users save the browsed entries to the final gazetteer.

Second, the middle panel displays the mosque features that match a current query (as specified in the left
panel). There are three tabs, which displays agent results, text results, and combined results. However, as we
only focus our technique on text sources, only the Text tab has information about mosques that we integrate from
multiple sources together presented in a ranked order of score. Users can click on any result to see more detailed
information in the right browsing panel. Furthermore, we provide users with two new functions in this interface:
(a) Ability to see the potential merges and merge them into the displayed group, and (b) Remove incorrectly
merged entries, and to search for other raw records sharing similar context.

Third, the right panel for Web browsing lets analysts browse and inspect the context where the information
appears, in order to draw conclusion about accuracy of results. Users can click on the URL hyperlinks in each
result (in the middle panel) to navigate to that URL in the "Preview" tab.

Overall, the three panels together provide an integrated operation console, much like what we also offered in
the Phase I prototype for finding population and in the Phase I option task of discovery of Hospitals in Chicago for
analysts to browse through the discovered hospital features, make judgments on the accuracy of results, and import
qualified records into the gazetteer.

3.6.2 User assistance in correcting record merging.

We recognize that the problem of mosque discovery is more challenging than the GeoEngino applications we studied
earlier. Our precision here is 48%, while recall is 85%. Besides the areas of improvements that we identified, we
also believe the users of the system need to participate more actively-not only in making final decision, but also
in giving feedback to system for improving accuracy.

45

Figure 42: Errors due to extraction from unrelated regions of the page.

For merging raw records, we compute similarity between them-based on similarity of mosque name, city name,
and the context of other city names mentioned in that page. Unlike the hospital task, where we had full address
and precise geocoordinates available, here, our merging algorithm has to rely only on the names of the cities.

To overcome the inherent difficulty in merging, we will provide more functions in our interface for users to
inspect and make changes in the merging results generated by the system.

1. Approve Potential Merges For each merged result, we return two sets of raw records-the first set of
confident merges, and the second set of less confident, i.e., potential merges. Figure 40 shows two sections for
the mosque result ("Blue Mosque", "Mazar"). The raw records in potential merges section may have differences in
mosque name, or city name, or more likely, in the context of the list of cities in the page where that raw record
was extracted from. Users can click on the source link to inspect the page content in the "preview" tab. If the
raw record indeed matches the merged record, users can use check-boxes to select and move that raw record from
the potential merges section to the confident merges section.

2. Delete Confident Merges Quite possibly, our merging algorithm may make mistake in erroneously putting
some raw record in the confident merges section. We provide users a "delete" function to remove these raw records
from the group, before inserting this saving this merged record into gazetteer.

3. Raw Records Filtering In general, the number of raw records appearing in confident merges or in the
potential merges section could be large. For example, for the screenshot in Figure 40, there are 29 raw records
in confident merges section, and 6 raw records in potential merges section. To facilitate browsing through these
raw records, we provide client-side search. Users can type any keyword in the keyword box (e.g., "news"), and
the results will be filtered to raw records matching these keywords. In our current implementation, the keyword
search is supported on mosque name, city name, and the tokens in URL. This search can later be extended to also
provide filtering on type of content (e.g., images, videos, news, text, etc..) or metadata properties (e.g., title of
the page, meta-keywords, meta-description, etc.) and full page content.

46

Figure 43: User feedback for detecting unrelated regions of the page.

3.6.3 User feedback for improving text extraction

Many of the errors we identified in our analysis require us to improve our text extraction modules. Some of these
errors are context dependent, and will require us to compile rules specific to the target application. We envision to
involve users of our system in learning these rules. In the current implementation, we "simulate" such a learning
component for two specific types of errors-extraction across unrelated regions of the page (E4), and ambiguity
between person vs. location names (E6).

1. Avoiding extraction across unrelated regions Our current text extraction considers the content of a page
as one single string, and applies recognition and assembling of mosque name and city names anywhere in that
string. As a result, often our results include mosque tuples that are associating entities from unrelated regions of
the Web page. Consider, for example, the results from our system shown in Figure 42 for mosque name "Ibrahim
Shah Baba Shrine."' The correct result here is ranked at position 3, obtained from the news story about this
mosque (top of the page, shown in the preview panel in Figure 42). The first result is erroneous due to error type
El, and will be fixed by avoiding mosque name and city name to be overlapping. The second result is erroneous as
the extraction occurs across the unrelated region-from the anchor text of two hyperlinks pointing to independent
news stories. The anchor text of one of the hyperlink mentions city name "Kandahar," while the other mentions
the mosque name "Ibrahim Shah Baba Shrine."

To avoid these errors, our system needs to learn these templates, or patterns, e.g., list of hyperlinks with
structural similarity represent unrelated text. We "simulated" this learning, by having user provide feedback to
the system when they come across such erroneous extraction. As shown in Figure 43, user can select a mosque
tuple, and then click on the "Navigational Context" function to see all the mosque tuples extracted from the same
"context" as the selected tuple. User can review the list, and then choose to delete all the tuples. System will then
set the scores of all these raw records to 0. In the current implementation, we look at source name and mosque
name as context, which means, even the correct result ("Ibrahim Shah Baba Shrine", "Qaleh Chah") will be deleted.
In potential future development, we might refine the context to look for tokens and other HTML features in the
surrounding context of the selected tuple.

2. Resolving ambiguity between location and person name There may be a problem distinguishing

47

Figure 44: User assistance in resolving ambiguity between location and person name.

person's name a from location name, when the same name can be used as both the name of a person as well as of a
location. The general approach for addressing this problem is to learn contextual rules based on labeled examples
[61]. Whenever users come across a result where the extracted city name actually represents the name of a person,
they can provide the feedback to the system. Consider, for example, the mosque result ("Sect's mosque ", "Yusuf"),
as shown in Figure 44. While "Yusuf" is a city name in Afghanistan, from the page in the preview panel, we can
see that here it refers to the name of the person ("Mr. Yusuf", or "Yusufs death". "Yusuf was"). User can click
on the "location/person ambiguity" function, our system will recognize the contextual pattern, and return a list
of other occurrences matching that context. In the current implementation, we simply look for all the occurrences
of "Yusuf" as the city in that specific source. In potential future development, this function might return all the
city names we extracted in the matching context, e.g., "Mr. #city" or "#city was." Users could inspect the list of
other results sharing the same context, and click on the delete button. This would provide feedback to the system
to add a new contextual rule to resolve the ambiguity between a location and a person name.

3.7 Text Extraction Technique Improvements

We implemented several enhancements in our text extraction module, based on our observation of its performance.
Earlier, we evaluated the performance of our mosque discovery system. The error cases of our system were
categorized into different reasons for errors, as previously summarized in Figure 37. Specifically, we added the
following enhancements:

3.7.1 Backward-context name extraction improvement

In our previous implementation of text extraction, we extracted names of the mosques by first identifying "key
terms" (e.g., mosque, masjid, shrine, etc.) in a text, and then moving backwards in text content until a "name
separator" (e.g., verbs, sentence boundaries, etc.) was found. The sequence of terms between the name separator
and the key terms would be considered as the name of the mosque.

We observed that our name extraction results were not quite accurate. So, we added enhancements of:

48

Comparison Previous implementation Enhanced implementation
blue mosque blue mosque

4 same results
imam ali mosque imam ali mosque
blue mosque blue mosque
shamshira mosque shamshira mosque
afghanistan abdul rahman mosque abdul rahman mosque
khwaja abd allah ansari shrine abd allah ansari shrine
herat ? green mosque green mosque

8 names cleaned
piyada ? id gah mosque
prophet ? pul-e khishti mosque

id gah mosque
pul-e khishti mosque

? friday mosque friday mosque
? khost mosque khost mosque
? lashkar gah mosque lashkar gah mosque
? mosque —

3 names pruned prophet mohammed ? mosque —
? shrine —

mosque of herat
mosque of the cloak
mosque of the hair
shrine of hazrat ali

9 new results shrine of hazrat ali basic
shrine of hazrat ali
shrine of ali
shrine of kurush
shrine of hazrat ali

Figure 45: Comparison of mosque names extracted by the previous implementation and the enhanced implemen-
tation from an example Web page.

1. Name cleaning: We cleaned the name of the mosque to remove special characters.

2. Pseudo-adjective name separators: We added new rules for determining if a text token is a name separator.
Previously, we had a long list of "stop-words." This list is difficult to maintain or compile. As an enhancement,
we observed that many of our incorrect name extractions were the result of an adjective included in the
name of the mosque. So, we added new rules that would consider tokens ending in "-ed" or "-ing" as name
separators.

1 Forward-context name extraction
Our previous implementation of name extraction, as described above, used to go backwards in context from the

tokens matching key terms. As our analysis of different categories of errors showed, our previous implementation
missed in extracting mosque names that required forward context, e.g., "Shrine of Khwaja Moin-u-din." We used
the same rules for determining whether a token is a name separator, and adopted our backward-context name
extraction to also trace in a forward direction with regard to text segment.

2 Tuple association improvement
In our previous implementation, we were returning all pairs of the mosque names and the city names that were

extracted from a Web page as candidate results. These pairs were scored based on the proximity of the two entities
in the text segment. While this scoring scheme worked well, we found that, upon aggregation across sources, some
of the less likely associations were ranked higher overall. As we see from the difference between Figures 37 and
45, one of the key areas of improvement was related to pruning out meaningless associations.

We modified our tuple association algorithm as follows:

1. Disallow overlapping city name and mosque name: We found that sometimes one of the tokens in the sequence
of tokens comprising a mosque name may also represent the name of a city in Afghanistan. For example,
consider the mosque name "Baba Khan Shrine": the token "baba" also represents a city in Afghanistan.

1!)

Site Backward Forward
Labeled Extracted Correct Precision Recall Labeled Extracted Correct Precision Recall

Wl 8 8 8 1 1 3 3 1 0.33 0.33
W2 1 1 1 1 1 0 0 NA NA
W3 2 2 2 1 1 0 0 NA NA
W4 1 1 1 1 1 0 1 0 NA
W5 1 1 1 1 1 1 1 1 1 1
11 0 1 0 0 NA 0 1 0 NA
T2 0 2 0 0 NA 0 0 NA NA
T3 1 1 1 1 1 0 0 NA NA
T4 0 0 0 NA NA 0 0 NA NA
IT) 1 1 1 1 1 0 0 NA NA
T6 3 2 2 1.00 0.67 0 0 NA NA
T7 0 0 0 NA NA 0 () NA NA
T8 0 0 0 NA NA 1 0 0 0
T9 1 3 1 0.33 1 0 0 NA NA
T10 1 1 1 1 1 0 0 NA NA

All 20 24 1!) 0.79 0.95 5 6 2 0.33 0.4

Figure 46: Evaluation of the accuracy of the enhanced implementation of the mosque name extraction.

Context Popularity Precision Recall
Backward 80% 80% 95%
Forward 20% 33% 40%
Overall 100% 70% s.l'X

Figure 47: Summary of the accuracy of the mosque name extraction.

Our previous implementation included this pair a.s one of the candidate tuples, since it was simply returning
all pairs with proximity scores. So we next added a new rule to our tuple association function which would
prune out such associations.

Tightest binding of the city name and mosque name: We also found that there may be multiple cities
mentioned in the proximity of a mosque name. Our previous implementation involved associating all pairs
of mosque tuples. We added an enhancement that would prune out the associations that did not represent
the tightest binding. With this new rule, all the output tuples represented the tightest binding associations,
i.e., the text content found between the occurrence of the mosque name and the city name did not include
any other mosque name or city name.

3.7.2 Text Extraction Performance Evaluation

We first compared the performance of our previous implementation with the new implementation on many Web
pages and saw significant improvement. For illustration, consider the Web page on Wikipedia at this URL:
http://en.wikipedia.org/wiki/Shrine_of_Hazrat_Ali. We compared the list of mosque names extracted
from our previous implementation and the new system after the above enhancements were added, as shown in
Figure 45. As the figure shows, the first 4 mosques names were the same in the two implementations. We found
that there were 8 mosque names for which our new implementation extracted a cleaner name. Next, we found
that there were 3 mosque names in the output of the old system that did not represent any mosque-all of these
3 mosque names were pruned out in the new implementation. Finally, we found that the new implementation
ret urned a number of mosque names t hat t he old system did nol produce, e.g., "mosque of heral." "shrine of hazrat
ali," etc. These mosque names were extracted using the latest enhancement of extracting the mosque names in
the forward context. On this example page, a total of 9 mosque names were extracted by the new implementation
using forward context enhancement.

50

Result Quality Ratio
Good results 65%
Name Extraction Improvement Needed
(#10, #12, #15)

15%

Web Page Segmentation Needed
(#4, #5, #7, #14)

20%

Figure 48: Evaluation of the performance of the end-to-end system.

Next, we systematically evaluated the performance of our mosque name extraction technique, using the metrics
of precision and recall, on a sample of 15 Web pages. We recorded our evaluation results in Figure 46. We prepared
the sample of the 15 pages as a mixture of 5 Web pages from Wikipedia (marked as Wl - W5 in the figure), and
the other 10 from other text sources (marked as Tl - T10). We manually inspected each of the Web pages to
identify all the mosque names mentioned in these sample pages. We separately recorded the performance of our
mosque name extraction in the backward vs. forward context. For example, for the Web page Wl, we found 8
mosque names in the backward context and 3 in the forward context. For the same Web page, our mosque name
extraction returned 8 results in the backward context, and 3 results in the forward context. We then inspected
these results to determine how many were correct; we found that for the backward context, all 8 results were
correct, while for the forward context, only 1 out of 3 results was correct. Thus, for the Web page Wl, precision
and recall for the backward context were both 100%, while in the forward context, they were both 33%.

We summarized these performance results in Figure 47. After manually inspecting all 15 Web pages, we found
a total of 25 mosque names, of which 20 were found in the backward context, while 5 were found in the forward
context. Thus, the backward context seemed to be more popular when naming mosques. Our text extraction
technique seemed to perform better for the backward context than for the forward context. For the backward
context, we found that precision scored 80% and recall scored 95%, while for the forward context, precision was
only 33% and recall 40%. The overall combined performance, including mosque names in either of the contexts,
was 70% on precision and 84% on recall.

3.7.3 End-to-end System Performance Evaluation

We incorporated our new implementation into an end-to-end mosque discovery system, publicly available at
http: //geoengine . cazoodle. com/af mosque/. A quick inspection of the results shows that the quality of results
were significantly improved over the previous implementation, which can be accessed at the following URL: http:
//geoengine. cazoodle. com/afmosquevl. The accuracy of the previous implementation was only 45%, as we
found that several of even the top-ranked results were incorrect, e.g., the top result of the previous implementation
was for the city name "Baba" which overlapped with the sequence of tokens comprising the mosque name "Ibrahim
Shah Baba Shrine."

For a systematic evaluation of the performance of the end-to-end system, we inspected the top 20 mosque results
of our new implementation. As summarized in Figure 48, we found that the accuracy of the new implementation
is now 65%, which is much higher than the 45% accuracy of the previous implementation.

We again categorized these erroneous results into different categories of reasons. We found that 15% of the
errors resulted from incorrect mosque names, indicating that our mosque name extraction still needs improvement.
The remainder of the 20% results were incorrect due to erroneous tuple association. More specifically, for these
results, our algorithm is associating the city name and the mosque name from unrelated sections of the Web
page, indicating the need for segmenting the Web page into coherent units prior to dispatching the pages to text
extraction modules.

3.7.4 Enhancing Text Extraction with the NLP Techniques

As our second task, we studied how we can incorporate Natural Language Parsing (NLP) techniques to enhance
the accuracy of our text extraction techniques. As we had previously concluded, this would be one of the key
areas of enhancements in our handling of text sources.

To begin with, we surveyed existing literature for part of speech (POS) tagging, and decided to use Stanford's
POS tagger for our work [95]. The goal of POS tagging is to determine the correct part of speech for each word in
the text. As illustrated in Figure 49, Stanford's POS tagger [95] uses a cyclic dependency network. In contrast to

51

a) Left-to-Right CMM

(b) Right-to Left CMM

['I W—»V2)< >(?)

(r) Bidirectional Dependency Network

Figure 49: Cyclic Dependency Network as used in Stanford's POS tagger (image obtained from [95]

-

—

-

Baseline System 1 T raining Corpus

1 Rule Templates

1 Correct Answers

r~
Deriv* and Score
Candidate Rules Cunvnl Corpus

*
Select Rule n

Learned Rule
Sequence

t
Apply Rule

Figure 50: Transformation-based learning used for NP Chunking (image obtained from [84]).

some of the traditional approaches that use unidirectional inferencing [49, 59, 85] for sequence tagging, the cyclic
dependency network captures dependencies in both directions. Such joint inferencing has been shown to yield
superior per formance.

We used these POS tags, in turn, as input for text chunking, which will identify all the noun phrases (NP)
in a given text. Introduced in 1991 [41], text chunking, and specifically NP chunking, has also been an active
area of research within the NLP community [48, 59, 75, 98]. We used the text chunking technique [84], inspired
by transformation-based learning, which was originally used for POS tagging [51]. As shown in Figure 50, the
transformation-based learning iteratively learns new rules as it operates on the corpus. The template rules used
in [84] are shown in Figure 51.

We applied these two NLP techniques on several example pages and observed mixed results. As summarized
in Figure 52, on some pages we saw good performance (marked Gl, G2, G3). Conversely, in some other cases we
found that the results of NP chunking cannot be relied upon directly-that there is a need for a hybrid approach
(marked as HI, H2 in Figure 52).

• Gl: In the result Gl in Figure 52, our original entity extractor returned "exchanged mosque" as one of the
mosque names. As the chunking result shows, the two words, "exchanged" and "mosque," were separated
into diTerent chunks. Using this information, our entity extraction can be enhanced to prune out the mosque
names that span words belonging to different chunks.

• G2: Lkewise, consider the result of G2 in Figure 52. For this Web page, our entity extraction generated
"fahd mosque" as a mosque name. The NP chunking result, however, considers "fahd mosque" as part of a
noun phrase "wahhabi king fahd mosque." Our algorithm can use this noun phrase to generate the correct
mosque name.

• G3: For the case of G3, our entity extraction produced two erroneous results: "topics red mosque" and
"captured red mosque." As the result of the chunking shows, "topics" and "red mosque" are separated into

52

Word Patterm Tag Pattern*
Pattern Meaning Pattern Meaning
Wo current word To current tag
W-, word 1 to left T_,.To current tag and tag to left
w, word 1 to right To.T, current tag and tag to right
W-l, Wg current word and word to left T-j, T_l two lags to left
Wo, W, current word and word to right Ti.Ti two tagi to right
w.,,w, word to left and word (o right
W_i,W_, two wordi to left
w,,w, two words to right
W-,,-,.., word 1 or 2 or 3 to left

W|.W word 1 or 2 or 3 to right

figure 51: Template ol rules used in NP Chunking algorithm (image obtained from [84]).

differeit NP chunks. And for the second erroneous result, NP chunking places it as part of a larger noun
phrase "the captured red mosque and militants," indicating that this is not the name of a mosque.

• HI: The case HI shows an example page for which the results of NP chunking were not sufficient to fix
the enors. Our entity extraction produced two erroneous mosque names on this page-"worshippers offered
friday prayers mosque" and "bombed-out mosque." The first error could be fixed using NP chunking: it split
out the words "worshippers" and "offered" from the noun phrase, "friday prayers mosque." However, for the
second erroneous result "the bombed-out mosque" is indeed a noun phrase. Pruning out this later result
would require other hybrid techniques besides noun phrase chunking.

• 112: The case of H2 also shows an example page for which noun phrase chunking results were not sufficient to
correct the errors in our entity extraction. In particular, for this page, noun phrase chunking produced two
candidates: "beautiful mosques" and "the blue mosque." The first phrase is not the name of the mosque, while
the second phrase is a mosque name. We will need hybrid techniques here besides noun phrase chunking.

53

1:1 #mosque-name NP Chunking Result
Gl exchanged

mosque
locally/RB ,/, [we/PRP] joined/VBD with/IN [mem-
bers/NNS] of/IN [new/JJ york/NN city/NN] s/VBZ [96/CD
th/NN street/NN mosque/NN] for/IN [dialogue/NN] ,/, ex-
changed/VBD [mosque/NN and/CC synagogue/NN visits/NNS
] and/CC worked/VBD side-by-side/RB in/IN [a/DT soup/NN
kitchen/NN] run/VBN by/IN [a/DT local/JJ presbyterian/NN
church/NN] ./.

02 fahd mosque [he/PRP] is/VBZ [imam/NN] at/IN [the/DT wal-mart-sized/JJ
,/, wahhabi/JJ king/NN fahd/NN mosque/NN] ,/, [which/WDT
] opened/VBD in/IN [2000/CD] on/IN [the/DT outskirts/NNS]
of/IN [sarajevo/NN] ,/, built/VBN with/IN [saudi/.J.I money/NN
] and/CC named/VBN after/IN [the/DT saudi/NN monarch/NN]

03 topics red
mosque, cap-
tured red
mosque

[tech/JJ weather/NN topics/NNS] red/.J.I mosque/NN [red/J.I
mosque/NN] [109/CD usa/NN] [today/NN stories/NNS]
about/IN [red/JJ mosque/NN prev/NN 4/CD 5/CD 6/CD 7/CD
] [next/IN latest/JJS news/NN] from/IN [usa/NN] [today/NN
world/NN associated/VBN press/NN writer/NN authorities/NNS
] on/IN [Monday/NNP] probed/VBD [suspected/J.I links/NNS
] between/IN [radicals/NNS] from/IN [the/DT captured/VBN
red/JJ mosque/NN and/CC militants/NNS] in/IN [pakistan/NN
] ['s/POS northwest/RB frontier/NN] ,/, where/WRB [73/CD
people/NNS] died/VBD in/IN [weekend/NN suicide/NN at-
tacks/NNS and/CC bombings/NNS] ./.

1 1 worshippers
offered friday
prayers mosque,
bombed-out
mosque

[more/JJR than/IN 100/CD] injured/VBN in/IN [suicide/NN
bombing/NN incident/NN] took/VBD [place/NN] as/IN [
worshippers/NNS] offered/VBD [Friday/NNP prayers/NNS
mosque/NN] frequented/VBN by/IN [officials/NNS] work-
ing/VBO at/IN [checkpoints/NNS] on/IN [nato/NN sup-
ply/NN routes/NNS]. [taliban/JJ and/CC al/JJ qaeda/NN mili-
tants/NNS] ./.Uthe/DT bombed-out/JJ mosque/NN] had/VBD
been/VBN frequented/VBN by/IN

H2 blue mosque [cities/NNS] in/IN [afganistan/JJ including/VBG kabul/NN
] ./.tudy/VB [the/DT afghanistan/JJ religion/NN] and/CC
visit/VB [beautiful/JJ mosques/NNS j [the/DT blue/JJ
mosque/NN] is/VBZ [beautifula/NN] as/RB well/RB [as/IN
many/JJ other/JJ temples/NNS] throughout/IN [the/DT coun-
try/NN] ./.Uthere/EX] are/VBP [many/JJ people/NNS] [
that/WDT] are/VBP willing/JJ to/TO give/VB [you/PRP] [
personal/JJ tours/NNS] including/VBG taking/VBG [you/PRP
] outside/JJ of/IN [the/DT city/NN] to/TO experience/VB [
native/JJ customs/NNS] ./•

Figure 52: Results of NP chunking on the example Web pages.

4 Discovery of Features from Geo-tagged Images

We are motivated to study how to benefit from the increasing prevalence of geo-tagged media on the open Web, for
our problem of generating geospatial databases. We are observing that media content on the Web is increasingly
becoming geo-tagged, i.e., a geo-coordinate is being tagged with a piece of media content. Such geo-tagged media
can be founc in a variety of formats, e.g., images on picture-sharing Web sites like Flickr and Picasa, videos on
YouTube, ric I editorial content on Wikipedia, and live status updates on real-time messaging services like Twitter.

54

4.1 Discovery of Mosque Features from Flickr

In the first portion of this task, we focused on studying how to use geo-tagged images in our problem of generating
mosque features. We used images publicly available on Flickr, a popular photo sharing service. This service pro-
vides access to its content via its Application Programming Interface (API), with well maintained documentation
available on its website at http://www.flickr.com/services/api.

Using the Flickr API, we obtained a total of 4246 "mosque-related" geo-tagged images all around the world, as
visualized in Figure 53. We used the "flickr.photos.search" API. To restrict results to only those images that were
geo-tagged, we used the search parameter "has.geo" and set its value to 1. Since our goal is to discover mosque
features, we specified a list of mosque-related keywords, i.e., {mosque, masjid, shrine}, in the "tags" criteria. We
note that due to the preliminary nature of our investigation, the list of search terms is quite simplistic. In full
deployment, a more extensive list of keywords, as well as searching within full text rather than just within the
tags field, would be necessary.

We used the geo-coordinates of these mosque-related images to filter down to those relevant to our target
geography of Afghanistan. We used a bounding box of latitude between 29 and 39, and longitude between 60 and
74, as a rough approximation of the boundary of Afghanistan. This filtering resulted in 45 images, as displayed in
Figure 54. For each image, our database contained latitude and longitude as obtained from geo-tags, the URL of
the image, and the title and description of the image.

In this image dataset, we observed a consistent pattern in the title of the images. We observed that the title
of these images often followed a common pattern, i.e., "#mosque-name (#city, #country)." The images following
such a pattern in the title were uploaded by different users, so this pattern seemed to be a naturally common way
for people to title their images. For example, "Blue Mosque (Mazari Sharif, Afghanistan)" follows that common
pattern. By matching the title of the image against this pattern, we can accurately extract the name of the
mosque, as well as its location.

We used this insight in conjunction with our existing mosque name extraction module to extract the name
of the mosques from these images. We first match the title of the images against the pattern of "#mosque-name
(#city. #country)" by looking for the opening bracket "(," the closing bracket ")," and the comma. If the title
matches this pattern, we use the corresponding terms to obtain the mosque name, and its city and country. For
the images for which the title does not match this pattern, we apply our existing text extraction module to extract
the name of the mosque from the title, as well as the description of the image.

As a result, we were able to obtain the mosque names for 31 out of the 45 images in our dataset. As shown
in Figure 55, we added 3 additional columns to our database table-for storing the extracted mosque name, city
name, and country name. We found that the title of 20 images successfully matched the pattern of "#mosque-name
(#city, #country)," so for these 20 images, our extraction could find all three attributes mosque name, city and
country. For another 11 images, our text extraction module could find the name of the mosque from the text
content of the image, i.e., the title and the description of the images. For these 11 images, we could not find the
name of the city or country. For the remainder of the 14 images (out of a total of 45 images) we could not find
any of the 3 attributes.

The results of our preliminary study look quite promising. In particular, we observed the following two key
possibilities:

Figure 53: Map overlay of the geo-tagged images related to mosques, obtained from Flickr.

in knq set trttt MKntptKnTi

30366699 |616633 |hnp W»fl«kr.((>m'p*oW36209325eN05/40534796S5' Sonm Eidgah mosque (Zaheden. Iran)

367 167099996 jhttp wwwfkckr.com photos 362O932S8N0S 4058672141 Blue mosque (Maun Shant, Alojterwlen)

mum j 70 447669 |http www fkckr.com photos'36209325SrM0S 4058874133 Cential mosque (lalelebed. Alqtsenisten)

33334438 16992015 jhttp ;'•»• fkckr com, photos'36209325«N05 4058674461' Meal mosque (Khost Afohanrsten)

a.ssuu |68 774971 | http www fkckf com phclos'36209325eN05 4059111481' Charki nvotqsM iDushenbe. Tajikistan)

3453091 169136749

165700279

jhttp www.fkckt com photos'362O9325SN05 405961361! Tht tVtit mosque (Kjbut Alohanistan)

31610(7 |l«tp wwwfVkr.com:piv<*os'36209325t}N05 4059613760 Unrvenaty mosque (Kandahar. Afghanistan)

34 345081 162.186649 jhttp: .'wsvw.flKb.com'photot/36209325«F405 .'4059615780' Friday mosque [Herat Afghanistan) Herat Ff«<»9imo«:h«

36656166 171262176 jhttp: 'www.nKb.cc)irv/photos/36209325»N05 '4059656360 Rural mosque (AlKhut. Tepkistan)

34 351026 J62188796 JMIpVAmM.nKb.com/photoi/pawti4/4072191863/

jhttp 'www.nKkr.com photos'plhreed 4072192385

Friday Mosque

Restoration Workshop

TKri pU<« **1 Iruty r*r>sprKiiv«

34351028 162188796

34 351028 162188796 jhttp www fl.ck. com photos pthr.ed 4072192661 Restoration Workshop

34 351028 162186796 I http: 'wwwnKkr.com/phMM/ptlvttcl4072192759 MoreTeework

34 351026 |62188796 jhttp: 'www.nKkr.com/phctovpthrt.4'4072192879 Entrance to the Restoration Workshop

34 351026 162186796 jhttp www (IK kr.cc^/phMotpthr.tcl'4072192963 Inscriptions

34J51026 162188796 1 http www fkckr.com r^iotos'pthreed'4072193227' Center at the Mosque

14 351028 162186796 |http www fl.ckr com photos pthread 4072193425 Wei

34J51026 162188796 | http www fl.ckrccm photos pthreed 4072952776 Friday Mosque tftd Herat Skyhne

34351026 |62188796 jhttp wwwflKkr.com photospthieed 4072953398 OvtforaStrol fc.th«^J**o*.*fFr.^ M©M»O€

34 351028 162188796 jhttp: www flKkr.com;photoI.'pth.c-«l 4072953964 Some of the Mew Tdework

34J51028 162186796

162188796

I http www tVkr.com'phototpthreed 4072954 386 Our GcMje to the Wockshop

34 351028 |help wwwft.ckr.com photos pthreed4072954702 Friday Mosque

34 351026 162188796 1 http www fl.ck. com photos pth.ead 4072957806 Friday Mosque wrth Gardens

34 351028 162188796 |http wwwfl.ck.com photos pthcead 4072957882 Friday Mosque

33 709636 |73075912 jhttp www n.ckr.com photos 362O93253N05 4075749667 Faisal mosque (blemectd. Pakistan 1

Shark Eid Gah mosque (Multan. Pakistan)

Central mosque (Quette. Pakistan)

Central mosque (Behaweipor. Pakistani

30190179 17145603 jhttp www flKkr.com. photcK/36209325tJN05'4075755329'

jhttp 'www IVb.ccvm/phMos/36209325ehl0S'4076053013'

|http www ftKkr.com.'photos.'36209325©N05 4076054185'

3021466 167016166

29 394699 |71663181

3140895 173 08345 jhttp wwwftckt.ccim photos'362093258N05 4076507296 Central mosque (Fatsalabad. Pakistan)

34 009151 JTI .559341 jhttp wwwfl.ck.com photos 362O93253N05 4076M5620 lslam.a mosque (Peshawar. Pakistan)

34 197696 172.046279 jhttp wwwflick.com photos 362093253N05 4076815582 Maulana Abdul Qeyum mosque (lAvderv Pakistan)

33729693 173.040027 |http:/'ws«.nKb.ccm'ph«ot.'k>ovi«>t/t0«4952351' thUhf-fiMiitdMou**
33730107 J73036797 jhttp://www.flKkr.com/photot'lr=vs»nt 4095843030 Shah Faisal Mosque Sh*h FMA) MMpdMou*** • hnf• http 'fi

337296 1731150842 jhttp: www flKki.com/pholoi/kovs.ot/tl23998557. Hack Beauty m*kU*itv<;f*urtil*him*b#lZoo

Figure 54: Dataset of the mosque-related geo-tagged images obtained from Flickr that are relevant to the geography
of Afghanistan.

1. Inferencing via coordinate matching: We found that for many of the images, we could not extract the name
of the mosque. However, these images were geo-tagged. Therefore, it is likely that multiple images, whose
goo-coordinates are in close proximity, represent the same geo-spatial leal HIT. Thus, while an image ina\
not specify the name of the feature, we can group that image together with other images, based on matching
their geo-coordinates. We can infer the mosque name of that image based on the mosque name extracted
from those other images. In other words, it is sufficient for us to be able to extract the name of the feature,
i.e., mosque name, from at least a few of the images in a group.

2. Visualization over time axis: We noticed that the meta-data of these images also include the date when the
picture was taken (or uploaded). Using multiple images of a specific geospatial feature over a number of
years, we can visualize its evolution. Many of the geospatial features that are of interest to us represent
buildings and other structures, and it will be useful to track their lineage over time.

4.2 Creation of the Media Aggregation Engine

We have found that Flickr is an excellent source for obtaining Geo-tagged pictures. We have also discovered several
more sites that allow API access to search for Geo-tagged media. Some of these sites include Picasa and YouTubc.
In order to facilitate our extraction, we have built a Media Aggregate Engine, a modular tool that allows us to pull
and organize media from several sites. Currently it aggregates from Flickr [25], Picasa [17] and YouTube [8].

4.2.1 Discovery

We used the following search parameters within the API of our chosen sites:

• Universal:

1. Tags: mosque, masjed, masjid, islamic center,

• Flickr:

56

Ml WA Ufl WM MB (wlA t«*d7 f«td)

|SuM«M«*<nM*M U*4an »• IJDJHT |u«u |hnp\. *«w VIJ twphet |Swnn l*»*h mMQut (ZJ#» 1

MM wiifm MM mm l*J l«i IttpV/wwwJbCkl NMMJA |IM metQWt (MMM ShMf . 1

|C«**tmM*rt l*UU«d |«gh»h«Hw |M*MH |»M7*7 |l«»//i»—Acfa«ow^pKW-|Ct»*nl WHMIUI'**!<- 1
M*nm«9«» Mfl •MMM |1UMW Hums |http .w* fW<ti tom/phot |M^moiq0«10»t<t««K* |

|Ou*tamM*M Durfunb* \l**Mm IMIMJ.1 |M77tt7 |http *sw.fWknom phot |CK«ta —JM (tWw»« - 1

| The Graft mM«ut Kabul |Wgh***t«n iHinn Mi»n |w»//ww».Jhcfa<—tfp»»t-|T»w6mt WIUMI |KMwl*~ |

|Uwv«rt*) met^ut

Iftural mo«4jut

Undtfw JMghMMton
JAfghwMtan
|T*atfM«n

|n*iM7
|UMMi

IMJSIU
\tium
Injuu

I http *w* HKII twn'phot |Ufw.*<vr> —Mj| [Kjufch- |

Afcthw |hlt» •wvw*«K»nom-'p(wt |Rur«lnw«9Mt(AlK>turTaM..-|

|F«4»» >»!»»

1
1
1
1
1
1

I iHJUU
)UiMW
|UiM7*7

IU1M797

|U 111797

|U1M797

|h«p .w-fUtkitomphot pMHMM !TK» •*•«»•• tiut. «vmi 1
|Mtp «w flKli COm/phOt llUMMMMm Wwkl»<«»
Ihltp «-*wtlKli torn-phot |«M«(«*lK>nWwti»««i
|Sttp w*»tl« trtpm' phot |MDt*T«MO>t

|hMpi//>nn*JVb nH|M MnHriMMH -1
|H«lp #rt**flttki torn, phot llnw^iOA*

|Mtp «^«.flKi.tom'pKct |C(f<tc<rflh«McM<j«

1 IMJOU lUJMW |«tp *•«Ktr torn phot |*Vr*

\tn4f M»Hw» |M moi KJ 1*7*7 iMt^y/wM.flKbxem'phM- |F«4*y UM«M«M)H«M tk. 1

|F~*»>U«**

1
t Ei |*J1MM7

|Mtp- -w*ftKt,««*vphot J0vtfooS»«l |b »• ftwd^i e* *« f«4^ j

jhttp —v. fctlri torn phrt jtonM pf th. Mtw TIMOA 1
Ihttp • 'www ffctti «w\'p*ot |0u. Gwrit W *• *C*t*o» |

|f««*MM«tt iHJun (uwrn |Mtp -w»Mi t«m-ph«t |Fn^Me4«M«

jlwdty MII»H 1 IMJMOI \umm |Mtp W•«KilCWTV'phCt jfn*^M«woo«-*>&»*"* j

|l"d#,Uo*** 1 JMftlOJ \umm |hnp.. W-*ftKiitom'phot |F«4^Me^ut

|f—1 tmtm* U*m«c*d |»«fa*Un |J]7WM JTuna |«tp H-M.nKViccm'phot |f^wlmo«J«*{bi.T^»l*<P |

[Millttwp hUun j»M«i |»j«m |71«M |M»p- - 'mn.tiK.1 <«m phot jUuMidu*">•*<*« AM--I

|CtMt«l *•*••*• QurtU |»*>U» |J021«M k7flM17 IhRp. **• ffcttl (OOv'phOt |C<MrHmoiowt(Qi«UP*... |
|C«na«l n«my> •*>w*»wt jhfeaun |»1W7 In Mm Ihttp #w*f)Kki(omphM k^rrfmowtu* ;»**.•» j

|CwrtnJ BMpi F«uUc*d |P*ta«Un |ii*»w |7)MHS |Mip »nMi«m'pl>ol (CcMf^mnqut(f«uUbW 1

|bJ*nta*mc40jUt NHX«W jftkMUh iMOOflli IfUSNi |hnp ww.twtti torn phot thiMnwmoiqwt (tnhaww... 1

I IMM AM* Q*ywn m» Mw«M jPttMlaM JMIfTV |Ho«a ihttp «W*«KII torn, phot jfcUul«f**l>(WO«.«mmo |

|!MifMWlMt*d 1 IB.72MM JTJMOU JMtpV/wwwJMDxom'ptwt-j- |$hA Fwul M«pd

|ih«hrw%*iM»tfu« |U.7JMM tram [http **v.«Ktu(om'phot |y«hf*«tWo*ijMr jIMtFMMlM^rf

1 \ii.JM |7J«0H |hnp w~m flKti (pm'phot |kMk iMwh; |MKfc iMUlvCaplwiM mtt-1

|f nday mct^u* HP* |M*»»«U* IMMMI I*JIM*J |http. ww*A<4ftt-n'ph0t |f»d^mM«W(IH('«tWfh iNtwnNtMflMMNtanNpVM- 1

jcrurfamoiqut CXrtKw*. |T^bM«. jjtSMU |«.nM7 jhnp. *w* ffctti torn-phot |Ch«rti mcniu. [Dnh*i*t l^tam n I^MMMPWWU |
|«»*H mo*qut W*m#b»d |t«kMUn |unw J7U7MI impJ/wmnKtax&i/pML.BMMlMMMJiM*mJHti-|«»»n»*****mftmtMl \

|f«ulme«4w« Ifirnrtii |»«fc»Uft IwntMi I'JAMM |m*Jfwm 1Kb tom/pMt MM MWMJI Wwm>»< »*.. |HD0 tiWH Fwm 1 NX K.. j

|No GwnM mM«M 1 |*7rt4U iMjroot 1 http -*s«fUai torn phot |hk>Gomh«)mot^Mt«t*t j

1 1 |U7M]U |7]JHtlS |http *•**. *Kir tom'phot |lM..»l

1 1 |HMMi |73Jtt*l |hltp *w*»klr torn phot Lfl MM • UM«IM I' • hfrf. Wtp Vfh«9***b j

|F«MIM«** HMlfaMlbtovrf 1 1 |»71MM |71M»7» |M«pV/«MM«.hcto.c4m/pfMt..|F«Ml MMfd HrfM
1*** M««v, 1 |«7SMIS |7i«747 |M*//«wwJlKkJ (omSphM- j Aquh MM«M

1 1 \wn* |7i071*4 |hnr."'-**BKt:rtom,'phot |*»«hsm«H WAJU UO* jl4ott kno* fh. lunwfimt I

1 1 \nm» J70MI71 jhtlprv •»• »Wt(rf (onvphot |M/«M(IRWI1 (M> UU U |v»t> uwftil m fur«lPtknUn j

P'igure 55: Mosque-related geo-tagged image dataset, after extraction of the entities #mosque-name. #city, and
#country.

1. Bounding Box (long, lat): (61.018066, 29.897806), (38.358888, 71.279297)

2. Accuracy: 12 (Between city and street level)

3. Has Geo: 1 (Return only pictures with associated geospatial information)

• Picasa:

1. Bounding Box (long, lat): (61.018066, 29.897806), (38.358888, 71.279297)

• YouTube:

1. Center Point (lat, long): (33.852170, 66.005859)

2. Radius (miles): 200

Using t hese parameters, we discovered a total of 204 media items inside the rough bounding-box of Afghanistan.
We postulated that some portion of these pieces of media might be tagged incorrectly or out of context e.g., a
picture of a drawing of a mosque instead of an actual mosque, and strove to isolate the correctly-tagged media
items. A sample of context-correct and context-incorrect images can be seen in Figure 56.

4.2.2 Grouping

After reading several papers ([62, 87, 94]) we further postulated that it might be possible to eliminate mis-tagged
media through geographic grouping, since it would be less likely for multiple pictures to be mis-tagged or tagged
out of context. We used the following algorithm for our grouping:

• Choose a distance, A.

• Create a new group and place the first piece of media inside.

57

Context Correct
http://www.flickr.eom/photos/78303790@N00/7454594
http://www.flickr.eom/photos/90775848@N00/325093317
http://www.flickr.eom/photos/7571511@N03/439873680
http://www.youtube.com/watch?v=4youfUPsecs
http://www.flickr.eom/photos/22582876@N00/2043178240
Context Incorrect
http://www.flickr.eom/photos/94482130@N00/863309218
http://www.flickr.eom/photos/9692004@N07/729185829
http://www.youtube.com/watch ?v=FyQuZ9Qm.LE
http://www.flickr.eom/photos/78303790@N00/2538010998
http://www.youtube.com/watch?v=jmarVCZKPKo

Figure 56: Sample of context-correct and context-incorrect media items obtained from the Media Aggregate Engine.

• For the next piece of media, examine each existing group.

- For each piece of existing media in the group, examine the distance between it and the currently held
media.

- If the distance is less that A for more than half of the group, place the currently held piece of media
inside.

- If not, examine the next group.

• If no groups are within A of the currently held piece of media, create a new group and place it inside.

• Repeat for all remaining ungrouped media.

Using this method and a A of .1 miles, we discovered that the pieces of media were divided into 24 groups,
with 99 media items remaining ungrouped. We assigned an analyst to check the context of each of the media
groups and 20 of the remaining ungrouped items. We found that 100% of the grouped media items remained
context-relevant while only 75% of the ungrouped media items were context-relevant.

Based on this data, we discovered that it is true that grouped photos provide a better rate of accuracy. However,
the ungrouped photos also contain a fairly high rate of accuracy (75%) and, even with the assumed incorrect quarter
thrown out, generate more results than the the points given by photo groups (24 points in groups vs. 75% of 99, or
approximately 74). It is, however, much more difficult to programmatically check the accuracy of each individual
photo in the ungrouped section, making this much less useful for high-volume processing.

We also postulated that media groups containing contributions from only one user might act similarly to
ungrouped media since their context is not corroborated by a second party. After analyzing several of the single-
user media groups, though, we discovered that even these retain 100% context-correctness.

4.2.3 Grouping Radius

During our analysis of the affect of grouping media, we discovered that different grouping As created different
distributions of groups and often differing numbers of groups overall. An example of this can be seen in figure 57.

We chose to move to a more media-rich area, Colorado, to continue our research on grouping radius. We used
the following search parameters within our Media Aggregate Engine.

• Universal:

1. Tags: mountain, peak, summit, ridge

• Flickr:

1. Bounding Box (long, lat): (-109.0448, 37.004746), (-102.062988, 40.996484)

2. Accuracy: 11 (Street level)

58

.1 Mile Radius .3 Mile Radius

• 2 Kims

•]R«ns

• 8 ••in*

*3N«ns

• 5NMnt

7N«mi

23 tm*

Figure 57: A distribution of mosque-related media group sizes across two grouping-radius As.

1 Mile 2 Miles 5 Miles
94 97 74

Figure 58: A distribution of mountain-related media group sizes across three grouping-radius As.

3. Has Geo: 1 (Return only pictures with associated geospatial information)

• Picasa:

1. Bounding Box (long, lat): (-109.0448, 37.004746), (-102.062988, 40.996484)

• YouTube:

1. Center Point (lat, long): (38.925229, -105.710449)

2. Radius (miles): 150

Using these parameters and an upper-bound limit of the first 20 pages each from Flicker and YouTube, we
discovered 5,476 media items. We further limited our observations to groups containing at least 10 media items.
4884 pieces of media fell into these groups. We chose to examine grouping-radius As of 1, 2 and 5 miles. Figure
58 briefly illustrates our findings.

We postulated that too large of a grouping radius will lead to many disparate groups being lumped together.
Too small of a grouping radius, however, will lead to many repeat groups of the same feature in context. We also
discovered that this is a very difficult task to quantify since it requires human analysis of large portions of data.

We chose to examine, in detail, the 1 mile radius groupings for our media gathered in Colorado. Figure 59
summarizes our findings from one such group. We discovered that many of the media items, even from disparate
users, share similar tags. We also discovered that, and specifically in the group seen in figure 59, the groups
contained only one distinct feature. This means that the grouping radius A of 1 mile for mountains is at least
small enough to individualize the groups to disparate context items.

4.3 Grouping Benefits

We discovered two main benefits associated with grouping our media.

• Filtering of accuracy based on context of search

- Works even if groups contain media items from only a single user.

• Media inferencing

— The ability to apply shared traits to all media items in a group based on geo-location.

59

Media Item Location Relevant Tags
http //www.flicki\com/photos/66063424taN00/4,r>07303481 Longs Peak mountain
http //www.flickr.com/photos/7604710@N07/4270757322 Longs Peak mountain
http //www.flickr.com/photos/54565232@N00/3946896094 Chasm lake and Diamountain
http //www.fiickr.com/photos/54565232@N00/3946896838 Mountain
http //www.flickr.com/photos/54565232@N00/3946894132 Glass lake, Chasm, longs peak
http //www.flickr.com/photos/54565232@N00/3946894738 Diamountain and chasm lake
http //www.flickr.com/photos/54565232@N00/3946088169 Lambs slide
http //www.flickr.com/photos/79808541@N00/2669800037 Chasm lake
http //www.flickr.com/photos/20693808@N05/2316526933 Longs Peak mountain
http //www.flickr.com/photos/20693808@N05/2316526725 Longs Peak mountain
http //www.flickr.com/photos/20693808@N05/2317334652 Longs Peak mountain
http //www.flickr.com/photos/20693808@N05/2316526245 Longs Peak mountain
http //www.flickr.com/photos/76209814@N00/612208266 Longs Peak mountain
http //picasaweb.google.com/oxelson/MeekerLongsJul2008#5229662569908698802 Longs Peak mountain
http //www.youtube.com/watch? v=2uSc_QJS5zw Longs Peak mountain
http //www.youtube.com/watch?v=BkvaDTlA2uU Longs Peak mountain
http //www.youtube.com/watch?v=pYYDILBqgDg Longs Peak mountain
http //www.youtube. com/watch?v=QmPjovlpskM bongs Peak mountain
http //www.youtube.com/watch?v=MvtxXki4w28 Longs Peak mountain
http //www. youtube. com/watch? v=60S_grl9stg Longs Peak mountain

Figure 59: A sample group from the 1 mile radius grouped media.

Tag Breakdown

«A ^^^ • mosqu*

^ m ^^^^ * Afghanistan

^ m Ak i»Jam

^^m aaaaaat *W^A ^^ 1

^^^^\ ^A • Hunt

^^^A B • .hnna ^^^x\ ^^^^^"~ • maianaharil

^^^^v
^^^^^^ mazar

C^^^^ • blu«

^^j ^ ^^^^^^Bh^ m»j»r#iharif

^^B^aaaHaaa^^ ^r ^^^ • muslim

^^ ^^H ^^m
A ^m ' P»oprt
^^ ^^^^ afgtim

^r • ihchi

^^k aua

^^^•^ • balkh

Figure 60: A distribution of tags within a single mosque-related media-group.

4.1: Filtering As we discovered in section 4.2.1, grouping provides 100% context-correct accuracy for our search
term. This makes it easy to define certain locations provided by groups by the information gathered from within
the group.

4.2: Inferencing We discovered that the type and frequency of tags within a single group can provide valuable
information that we can use to apply traits across an entire group. Figure 60 shows a frequency distribution of tags
across one particular mosque-related group. We see that general tags, e.g., "mosque" and "afghanistan" appear
very often, while more specific tags see a greatly reduced frequency. In figure 61, we have highlighted the primary
tags of each media item in this group.

In analyzing and cross-checking tags through the URLs, we discovered that these media items are of a Mosque
known as the Shrine of Hazrat Ali, also known as the Blue Mosque. It exists in the city Mazar-e Sharif. All

60

Media Item Local ion Primary Tags
http://www.flickr.eom/photos/28421453@N07/4044299773 Hazrat Ali, Mazar-i Sharif, Timurid
http://www.flickr.eom/photos/28421453@N07/3931587585 Mazar-e, Sharif, hazrat, ali
http://www.flickr.eom/photos/28421453@N07/3814131825 Hazrat, Ali, Mazar-e, Sharif, Shrine
http://www.flickr.eom/photos/35604701@N07/3296151742 HAZRAT, ALI, MAZAR, SHARIF, BLUE, SHRINE
http://www.flickr.eom/photos/35604701@N07/3295309181 HAZRAT, ALI, MAZAR, SHARIF, BLUE, SHRINE
http://www.flickr.eom/photos/35604701@N07/3295291609 HAZRAT, ALI, MAZAR, SHARIF, BLUE, SHRINE
http://www.flickr.eom/photos/35597531@N02/3295046993 Mazar-e-sharif, mazarisharif, hazara
http://www.flickr.eom/photos/35597531@N02/3295045179 Mazar-e-sharif, mazarisharif, red

Figure 61: A sample group from mosque-related media with primary tags highlighted.

of this information can be found within the tags of the media. Some of the photos, #4 titled "Wrestling for
Relics" and #5 titled "Afghan New Year" do not contain images of the Blue Mosque itself, rather it's grounds.
By geo-coordinate association, though, and through their tags, we can add these sorts of descriptive attributes
to photos in the group that do not already contain them. That is, by geo-coordinate association, if one piece of
media contains information (such as an address or an alternate name) it is reasonable to assume that every photo
should also contain this attribute.

5 Mountain Attribute Discovery

We discovered several existing sources for mountain feature information already on the internet. Among them were
the National Geo'spatial-Intelligence Agency (hereafter NGA) [47], PEAKLIST [65], Wikipedia [66] and GeoNames
[71], which uses the NGA database as its primary source. Of these, we found the NGA to be the most complete
database, housing 14,028 unique mountain points within our area of interest, Afghanistan. The first attributes
that we chose to add to this dataset were the relevant level 1 and level 2 Administrative Areas (hereafter ADMs).
boundaries that are roughly analogous to States and Counties in the United States.

5.1 Administrative boundaries

5.1.1 ADM Boundary Dataset

After some initial research, we settled on the ADM information given by GADM [44]. From their website, we
obtained a set of Google Earth KMZ files of the level 1 and level 2 ADM areas. From these we extracted individual

4 X /*"«

Figure 62: A close up of the province of Kandahar and surrounding area, each yellow push-pin represents a
mountain feature.

(il

Area Recall Precision (100 points) Running Time
ADM 1 99.56% (13967) 100% 70 min 12 sec
ADM 2 98.26% (13789) 100% 136 min 11 sec

Figure 63: A summary of our findings for the original Winding Algorithm.

Area Original Running Time Optimized Running Time
ADM 1 70 min 12 sec 4 min 28 sec
ADM 2 136 min 41 sec 1 min 39 sec

Figure 64: A comparison of the original and optimized winding algorithms.

KML files which contain a description of the polygon bounding each ADM as a set of ordered points.
We were able to pull the sets of points into a MySQL database for further ease-of-processing. We repeated

these steps to obtain the bounding polygons of all ADM level 1 and level 2 areas within Afghanistan. Finally, we
plotted the location of each mountain peak on top of the ADM map, as seen in Figure 62. As this figure shows,
mountains exist within many provinces in Afghanistan.

5.2 Boundary Matching

5.2.1 First Placement Method: Winding Algorithm

1: Original Winding Algorithm
For our first analysis, we chose to use a point-in-polygon algorithm commonly known as the Winding Algorithm.

This algorithm calculates the number of times an infinite ray passes from the point to be tested across a set of
directed vectors given by the points that make up the polygon's boundary. Counting around the polygon clockwise,
vectors that cross the ray from below to above assign a winding number of +1 while vectors that cross the ray
from above to below assign a winding number of —1. The total winding number is found by taking the sum of all
the vector's winding numbers. A non-zero winding number means that the point is within the polygon.'1

A table of our results can be seen in Figure 63. We assigned an analyst to examine our points and found a
very high rate of accuracy; 100% for the 100 points that were checked against our plotted Google Earth KMZ file
of both ADM level 1 and level 2. We found, though, that the algorithm as-is takes an interminably long time to
run and wondered if there might be a method for optimization.

2: Optimized Winding Algorithm
We discovered that we can take the following steps to optimize our winding algorithm:

• For each polygon, store a bounding box given by the bottom-left and top-right most corners.

• For a given point, first check against the bounding box.

- If the point falls within the box, it might be roughly within the given boundary, so run the winding
algorithm on it.

- Otherwise, skip this boundary

We found that this produced exactly the same level of recall and accuracy as our original algorithm while
dramatically decreasing its running time. Figure 64 shows a comparison between the two winding methods.

5.2.2 Second Placement Method: Bounding Algorithm

1: First Pass Bounding Algorithm
We wondered if there might be another method to determine if a mountain point exists inside of a particular

ADM polygon and developed our own Bounding Algorithm to test this hypothesis. Our algorithm operates as
follows:

3See this site [90] for a more complete overview of point-in-polygon algorithms and the Winding Number.

62

Area Recall Precision
ADM 1 93.75% (13152) 100%
ADM 2 86.22% (12096) 100%

Figure 65: A summary of our findings from the Bounding Algorithm.

• Get latitude, 0, and longitude, A, for a given mountain in decimal format.

• Choose a deviation, A, as a range for discovering boundaries.

• Determine all boundaries North of the mountain point.

- Query the SQL table for all boundaries where:

"(boundary) _ "(mountain) (ma ^(boundary) ~ ^ ^ ^(mountain) ^ ^(boundary) ' ^
That is, where the longitude of the boundary point is greater than the mountain point's longitude and
the latitude of the boundary point is within the deviation of the latitude of the mountain point.

— Store all boundaries in an array.

• Determine all returned boundaries South of the mountain point.

— Query the SQL table for all boundaries where:

"{boundary) — "{mountain) ar^a ^(boundary) — ^ < ^(mountain) ^ ^(boundary) ' ^
That is, where the longitude of the boundary point is less than the mountain point's longitude and the
latitude of the boundary point is within the deviation of the latitude of the mountain point.

- Store all returned boundaries in an array.

• Determine all boundaries East of the mountain point.

- Query the SQL table for all boundaries where:

^(boundary) — ^(mountain) °^(* "(boundary) ~ A < "(mountain) ^ "(boundary) ' ^
That is, where the latitude of the boundary point is greater than the mountain point's latitude and the
longitude of the boundary point is within the deviation of the longitude of the mountain point.

— Store all returned boundaries in an array.

• Determine all boundaries West of the mountain point.

— Query the SQL table for all boundaries where:

^(boundary) _ ^(mountain) QUO* "(boundary) L± <* "(mountain) ^ "(boundary) "r ^i
That is, where the latitude of the boundary point is less than the mountain point's latitude and the
longitude of the boundary point is within the deviation of the longitude of the mountain point.

- Store all returned boundaries in an array.

• Find {North} n {South} n {East} n {West,}

• If only one name exists in the intersection, it must be the correct ADM of the mountain point.

• Repeat for all A G {l,.l,.01..001}

We discovered that large values of A almost always provide at least one match for our ADM boundary, but
often provide many more than that. Figure 66 shows the number of ADM boundary matches as our A decreases
for ADM level 1 and Figure 67 shows the same relationship for ADM level 2.

The results for our bounding algorithm are summarized in Figure 65. We assigned an analyst to determine
the accuracy of our algorithm and found it to be 100% after checking 100 points against our plotted Google Earth
KMZ file of both ADM level 1 and level 2. We found that our recall was slightly lower than that of the winding
algorithm for ADM 1 and significantly lower than that of the winding algorithm for ADM 2.

(i;i

ADM 1 5 4 3 2 1 0
A 1 12 135 1838 7558 4485 0
A .1 0 0 25 2027 11951 25
A .01 0 0 1 143 7370 6514

A .001 0 0 0 2 45 13981

Figure 66: A comparison of the number of ADM 1 boundary matches against reducing our A precision.

ADM 2 5 4 3 2 1 (I
A 1 22 322 2422 6520 4709 33
A.l 0 2 180 3941 9789 116
A .01 0 0 1 153 6785 7089

A .001 0 0 0 1 20 14007

Figure 67: A comparison of the number of ADM 2 boundary matches against reducing our A precision.

2: Second Pass Bounding Algorithm
We modified our original bounding algorithm slightly in order to catch the mountain points that the first pass

missed. Our probabilistic mapping algorithm is very similar to the bounding algorithm except that instead of
iterating over a reducing A to find a boundary that provides a single match, we aggregate all possible boundaries
in the North, South, East and West arrays. We then take {North} U {South} U {East} U {VFe.'tf} and assign the
most popular boundary as the mountain point's ADM. As the "Trust" score of our decisions, we used the ratio of
the frequency of the most popular ADM feature in the combined array to that of the second most popular ADM
feature.

The results for our probabilistic mapping algorithm are summarized in Figure 68. We assigned an analyst
to examine several of the ADM boundaries for both level 1 and 2 and found that we had achieved roughly 55%
precision with the remainder of our points.

5.2.3 Winding Algorithm and Bounding Algorithm comparison

We chose to directly compare the Winding Algorithm with the first pass results from our Bounding Algorithm. A
comparison of running times can be seen in Figure 69. A comparison of plotting differences can be seen in Figure
70.

We see a very high correlation between the two algorithm approaches:

• 99.76% and 99.62% match for first pass Bounding vs Winding on ADM 1 and 2, respectively.

• 97.67% and 95.95% match for the second pass Bounding vs Winding on ADM 1 and 2, respectively.

Figure 71 shows a map of the 33 plotted points that differ between the Bounding Algorithm and the Winding
Algorithm. We also see that the running times of the Optimized Winding Algorithm and the Bounding Algorithm
are similar, though the Winding Algorithm is clearly faster. It may be possible to optimze the Bounding Algorithm
in order to reach much closer speeds.

5.3 Mountain Elevation

5.3.1 GeoNames Elevation Discovery

We discovered that GeoNames has a webservice [70] that allows us to send a set of coordinates in decimal degrees
and returns an elevation in meters. We stored these return values in a MySQL database for further analysis.
We determined that this method had a recall of 96.84%, with a dummy value of -32768 being returned when
GeoNames had no data. Figure 73 shows a binning analysis of its accuracy.

(il

Area Recall Precision
ADM 1 100% (876) 50.74% (270 points)
ADM 2 IOO

1
;; (H).T2) 60.60% (264 points)

Figure 68: A summary of our findings from the Probabilistic, Mapping Algorithm.

Area Bounding Winding Optimized Winding
ADM 1 10 min 15 sec 70 min 12 sec 4 min 28 sec
ADM 2 21 min 30 sec 136 min 41 sec 1 min 39 sec

Figure 69: A comparison of the running times of the Bounding Algoiithm with those of the Winding Algorithm.

5.3.2 SRTM CSI

In order to provide 100% recall and also have another set of elevations to compare, we chose to interpolate our
own peak data over the SRTM CSI dataset. We downloaded the dataset from http://srtm.csi.cgiar.org/ [68]
and extracted the elevation information from the files around Afghanistan. Since the SRTM CSI data provides
elevation at 90m resolution, we decided that we must implement our own form of interpolation to discover peak
heights that fall within this resolution.

1: Interpolation Method
We chose to use an inverse distance weighting interpolation method known as Shepard's Method. [67] Shepard's

Method consists of the following sum:

u(x) = J2 wk{x)

k = oT,k=QWk{x.
Hk

where

wk{x) =
1

d(x1,x2)
p

(2)

(3)

Using this method, u(x) will yield our interpolated elevation, where uk is the elevation of each known SRTM
point in our set. We control two factors, the subset of SRTM points, TV and the "power parameter", p. N is
manipulated through a set of distance, A, that we choose around our unknown mountain point. A higher A yields
a higher N and thus a larger set to interpolate around. The "power parameter" determines the smoothing of our
interpolated figures. When 0 < p < 1, we expect a smoother interpolation, since distance away from our mountain
point is not very heavily weighted. When p > 1, distance away from our mountain point is heavily weighted and
our interpolation is expected to peak much more sharply. Despite these two variable parameters, experimentation
shows that variance in either N or p does not significantly change our interpolated elevation. See Figures 74 and
75 for a comparison across the nine mountain points from Figure 72 .

2: Interpolation Results
Since we interpolated our specific mountain points over many points, we were able to achieve a recall of 100%.

Figure 76 shows a binning analysis of its accuracy.

5.3.3 Conclusion

We note that when elevation information exists from the NGA Gazetteer, both GeoNames and Shepard's Method
fall close to that than the elevation taken from specific Internet sources. In either case, sometimes GeoNames and
Shepard's Method fall close to the mountain point's actual elevation, e.g., Shah Fuladi, while sometimes it falls far
apart, e.g., Kuh-e FergardT.

We also notice one aberration, the NGA Gazetteer's listed elevation for Shah Jus Aqa Char is roughly three
times the values given by the Internet, GeoNames and Shepard's Method. In fact, we notice that there are 64
mountain points whose NGA elevations are > 8000 while their interpolated results are much less. We notice

65

Area First Pass Second Pass
ADM 1 33 326
ADM 2 53 567

Figure 70: A comparison of the plotting differences between the Bounding Algorithm and the Winding Algorithm.

Figure 71: A map showing the plotting differences between the Bounding Algorithm and the Winding Algorithm.
for ADM level 1.

further that the ratio of the NGA elevation over interpolated results is roughly 3. FYom this we postulate that
these mountain points might have elevations incorrectly entered in feet rather than meters.

We discovered that between GeoNames and Shepard's Method, and as illustrated in Figure 77, that GeoNames
creates a better "guess" for a mountain's height, generally falling within approximately 100 meters. We postulate
that they must use a different interpolation method than Shepard's and that it might be possible to increase our
accuracy by experimenting with different interpolation methods.

We also discovered that interpolation has the secondary utility of verifying existing data, as we've seen in the
64 mountain point elevations that were probably entered in feet rather than meters.

Mountain NGA Internet
Kuh-e Jang Qal'eh 3781m 4171m
Gora Takurgar None 3191m
Shah fus Aqa Ghar 15,758m 4803m
Shah FuladT None 4153m
Kuh-e PTshashgal 4693m 6290m
Kuh-e Bandaka 6271m 6812m
Kuh-e FergardT None 5096m
Noshaq 7482m 7492m
Koh-i-Safed Khe s None 5325m

Figure 72: A comparison of elevations from the NGA database with information taken from PeakList and Wikipedia.

66

Difference in Meters Number of Occurrences
0 33
< 10 663
10 - 100 3706
100 - 1000 415
1000+ 88

Figure 73: A distribution of elevation differences between the existing NGA Gazetteer and values returned from
GeoNames.

p=3
7500

7000

6500

6000

.2 5500
flj

| 5000
IU

4500

4000

3500

3000

• A= 001

—A= 002
- A= 003

10

Figure 74: A comparison of changing A € {.001, 002, .003} with p = 3 on interpolated elevation.

A = .003
7500

7000

6500

6000

.2 5500
s — p = 5

« 5000
111

4500

— p=1

• p = 3

4000

3500 \ /
3000 w

0 2 4 6 8 10

Figure 75: A comparison of changing p 6 {.5,1, 3} with 6 = 0.003 decimal degrees on interpolated elevation.

67

Difference in Meters Number of Occurrences
0 2
< 10 43
10 - 100 2665
100 1000 2197
1000+ 95

Figure 76: A distribution of elevation differences between the existing NGA Gazetteer and values returned from
our Shepard's Method interpolation.

Mountain NGA Internet GeoNames Shepard's Method
Kuh-e Jang Qal'eh 3781m 4171m 3766m 3727m
Gora Takurgar None 3191m 3168m 3097m
Shah rfus Aqa Ghar 15,758m 4803m 4753m 4726m
Shah Fuladi None 4153m 4153m 4138m
Kuh-e PTshashgal 4693m 6290m 4352m 4294m
Kuh-e Bandaka 6271m 6812m 5814m 6037m
Kuh-e FergardT None 5096m 4220m 4232m
Noshaq 7182m 7492m 7172m 7294m
Koh-i-Safed Khe s None 5325m 4478m 4368m

Figure 77: A comparison of elevations from the NGA database with information taken from PeakList and Wikipedia
with GeoNames and Shepard's Method included.

68

6 Neighborhood Extraction

While examining the categorization of mountain points within ADM level 1 and 2 areas, we found one major
problem with the boundaries of such areas: namely that, depending on the country in question, the borders may
be only approximately mapped and subject to frequent change.

This same uncertainty applies to neighborhood boundaries within a city. Neighborhoods are described by
urban scholar Lewis Mumford in the following way: "Neighborhoods, in some primitive, inchoate fashion exist
wherever human beings congregate, in permanent family dwellings; and many of the functions of t he city (end to be
distributed naturally—that is, without any theoretical preoccupation or political direction-into neighborhoods."[81]
Since neighborhoods are defined by their residents instead of by a central political body, the boundaries between
neighborhoods can fluctuate wildly, even as according to two of a given area's residents.

There are already several well tested methods for defining neighborhood boundaries. In the 1970s, researchers
in Chicago, IL went door to door, asking residents to define the neighborhood they lived in. Given the residents
answer and their address, the researchers were able to map out a rough set of boundaries for Chicago's over
200 neighborhoods. More recently we saw an application of the data from Flickr, a image sharing website, for
discovery of neighborhood boundaries [4]. The images that users share via Flickr are often geo-tagged (using either
coordinates derived from GPS-enabled digital cameras or those entered manually by users); in addition, users also
add relevant keyword tags to their images. Using these two pieces of information, it was possible to determine the
boundaries of colloquial features, such as neighborhoods.

Since these methods have been proven, we chose to find another way to quickly and programmatically define
neighborhood boundaries for a given city. We chose to examine the data associated with the set of apartment and
restaurant (hereafter: "feature") listings for a given city. That is, we examine the feature's title, description and
any other associated meta-data in an attempt to extract its the neighborhood name within which it belongs. If a
neighborhood name is located, we extract the feature's address and store it in a database. Using this database,
we are able to predict approximate boundaries for each neighborhood within the city.

6.1 Area of study

We chose Chicago, IL as our area of study for the neighborhood task. Chicago is a suitable city for three major
reasons: it is populous, information-rich and has a fairly complete set of boundary points already defined.

We prefer a populous area for our first study for several reasons. A populous city is much more likely to contain
a large and diverse set of neighborhoods, whereas a less populated city might contain only a few neighborhoods or
neighborhoods largely defined by large contract housing developers instead of being grown in an organic fashion by
communities. A populous city is also more likely to contain a large number of apartment and restaurant features
from which we might extract neighborhood boundaries. This becomes very important, since our extraction is
unlikely to define exact areas. We rely on a large, statistically significant group of feature points to define our
boundaries.

In saying that we require a city to be information-rich, we mean that a large percentage of its features have
been harvested, indexed and made available to the public in a structured form on the Internet. We know that
Chicago, IL is information-rich because a casual Google search of "Restaurants in Chicago, IL" will yield thousands
of results. A similar search on a large, but information-sparse city such as Baghdad, Iraq, whose population is
over 6,000,000, only yields nine results. Figures 79 and 80 contrast the results between Chicago and Baghdad.

In order to test the accuracy of our boundary definition methods, we wanted to choose a city whose boundaries
were already approximately mapped out. Chicago has had several such neighborhood boundary surveys and
keeps its information up to date using Geographic Information Systems technology. We located a project that
created a Google Earth KMZ file of 227 of Chicago's neighborhoods [3]. Using this file, in a manner similar to our
extraction of ADM level 1 and 2 boundaries in Afghanistan, we were able to obtain a set of points describing each
neighborhood and store them in a database for later comparison. See figure 78 for a visual representation of the
KMZ map.

6.2 Sources

6.2.1 Apartment Features

We chose to use apartment features as part of our test data because, given a highly populous and information-rich
area, there is likely to be a large set of feature data publicly available for extraction and examination.

Figure 78: A color coded map of the Google Earth KMZ file which was used to parse neighborhood boundaries.

1: Apartment Features Source
There are many third-party apartment listings sites on the Internet. A short survey exposes three of the most

popular: www.apartments.com [22], www.mynewplace.com [34] and www.move.com [32]. An examination of each of
these sites show that they contain 490, 417 and 86 listings respectively; considering our need for large feature sets,
we found these datasets to be too small. We postulate that their size is due to the sites' methods of collection:
namely that they request feed-style submissions from apartment realtors: that is, their listing must be discovered
and compiled manually.

Rather than crawl many of these sites manually to acquire our dataset, we turned to our existing apartment
search technology, available at apartments.cazoodle.com [2]. Using our existing apartment listing aggregation
methods, we were able to obtain a total of 36,320 apartment features for the Chicago, IL area.

1.1: Neighborhood Name Extraction
Our apartment feature listings do not have an explicit neighborhood field associated with them, so we could

not categorize them exactly. Instead, we chose to examine each apartment feature's associated description in an
attempt to classify it as a particular neighborhood. We used two methods of classification, multiple matching and
single matching.

1.1.1: Multiple Matching
For our multiple matching algorithm, we chose to store an individual entry for each instance where a neigh-

borhood name existed within the apartment feature's description. That is, given an entry such as: "Just walk
the area and find everything you need, just a couple blocks away! So close to Wicker Park, Bucktown, and just a
quick bus ride to Lincoln Park and Lakeview. Blue line can get you downtown in 20 min. This is the giant 3BR

70

Figure 79: A distribution of restaurants across Chicago, IL as shown by Google Maps. Each red dot represents a
restaurant feature.

Go flit* rrapS Restaurants in Baghdad. Iraq

t an Mai uot

Figure 80: A distribution of restaurants across Baghdad, Iraq as shown by Google Maps. Each red dot represents
a restaurant feature.

w/ huge kitchen and equal sized rooms that you've been looking for!!! New bathroom. Brand new kitchen w/
dishwasher and all new cabinets and tile. Plenty of sunny windows. Tons of living/dining area space. Large Back
Porch," we would store an entry for "Wicker Park," "Bucktown," "Lincoln Park," and "Lakeview." We chose to do
this because it becomes very difficult to programmatically determine which of the associated neighborhoods the
apartment feature exists inside instead of simply nearby. Additionally, since we're not attempting to determine

ri

a
rv.no Pi N x 1

Figure 81: Two of Chicago, IL's neighboroods: Albany Park (left) and Magnificent Mile (right), to scale.

exact boundaries, it may be helpful to allow the entire set of associated neighborhoods to occupy the point, if
the neighborhood boundaries are, in fact, nearby. Using this method we were able to extract 13.879 apartment
features, each matched with an associated neighborhood.

1.1.2: Single Matching
We postulated that it might be possible to increase the accuracy of our extraction if we focused on apartment

features whose description matched only one neighborhood. Using this method, we ignored records similar to the
Multiple Matching example and only stored apartment features whose description matched exactly one neighbor-
hood. Using this method we were able to extract 8,854 apartment features, each matched witli an associated
neighborhood.

1.2: Geo-Coding Addresses
Since the set of neighborhood boundary points we extracted from the Google Earth KMZ file are geo-coded

latitude/longitude points, the points representing each of our apartment features must be in the same format for
analysis. An advantage of using our own apartment dataset is that Cazoodle already has a process in place to
convert each listing's street address into the corresponding latitude/longitude point, so no additional work needed
to be done for our apartment feature comparison.

1.3: Accuracy Analysis
At this stage in our investigation, we were only interested in a basic examination of ground truth accuracy.

We wanted to determine, for each apartment feature's point, if the point existed within the correct neighborhood.
This obviously ignores points that might lie just outside a neighborhood boundary, but might still be valid since
the boundary is only socially defined and may vary.

To calculate our accuracy, we used the same point-in-polygon winding algorithm as was used to determine
our accuracy in mountain-point matching against ADM areas. This algorithm calculates the number of times
an infinite ray passes from the point to be tested across a set of directed vectors given by the points that make
up the polygon's boundary. Counting around the polygon clockwise, vectors that cross the ray from below to
above assign a winding number of +1 while vectors that cross the ray from above to below assign a winding
number of -1. The total winding number is found by taking the sum of all the vector's winding numbers. A
non-zero winding number means that the point is within the polygon. A more detailed description can be found
at http://softsurfer.eom/Archive/algorithm_0103/algorithm_0103.htm#WindingNumber.

72

We ran the winding algorithm against each of our recorded apartment features latitude/longitude points,
classifying each within the neighborhood boundary that the point actually lies in, according to our set of extracted
boundary points. Of the 13,879 multiple match and 8,854 single match points, we were able to classify 11,233
and 7, 277 points within neighborhoods, respectively. We believe that the winding algorithm was unable to classify
100% of the feature points because we believe that a small subset of the points gathered by our matching algorithms
fall outside of all extracted neighborhood boundaries.

We found that 27.08% of points from our multiple matching and 32.55% of our single matching apartment
feature points agreed with the winding algorithm completely. We found that, in general, the larger areas had
high match percentages while the smaller neighborhood areas had very small match percentages. The Chicago
neighborhood Magnificent Mile, for example, had 401 apartment features from the multiple matching algorithm,
but only 1.99% actually fell within its area; the Magnificent Mile is a very small area of land near The Loop.
on Chicago's eastern coast side. Albany Park, however, which is many times larger than the Magnificent Mile,
contains 99 apartment feature points, with an accuracy rating of 61.61%. See figure 81 for a size comparison
between Albany Park and Magnificent Mile.

We found to be true that our single matching algorithm returned a higher percentage of exact matches, as
expected. We also realize that exact matching is only a basic analysis of our accuracy, but at this stage we believe
it is an indicator that our apartment feature matching is reasonably accurate.

6.2.2 Restaurant Features

Similar to apartment features, we chose to include restaurant features in our examination because, for a highly
populous and information-dense area, the set of features available for extraction should be sufficiently large for
our analysis.

2: Restaurant Features Sources
Unlike our apartment features, Cazoodle does not have an existing dataset for immediate analysis. We chose

to examine three primary sources for restaurant feature extraction, Google, Yahoo and Boorah.

2.1.1: Restaurant Extraction using Google
Ideally we hoped to use Google's local search API to access restaurant data for Chicago, IL [6]. The local search

API allows for the user to specify a query and a rough area. The API will then return a set of features that
match the emery and are local to the area specified. Results were initially promising; Google promised roughly
15,000 results for our query, "Restaurants in Chicago, IL." Unfortunately limitations within Google's API allowed
us to only return the first 64 results before refusing additional access. Rather than a mass information-retrieval
service, the API seems to be intended for use within an existing website, to show a small subset of local results
for a particular user query. Since the API limitations only allowed us to retrieve a small subset of the required
data, we chose not to use Google for our final analysis.

2.1.2: Restaurant Extraction using Yahoo
Yahoo hosts a local search API very similar to Google's: it allows the user to specify a query and a location,

though it also allows the user to specify a much tighter radius for its area bound [9]. Similar to Google, also,
Yahoo's API seems focused more on providing information in a small sidebar to an existing website rather than
lor mass data extract ion.

Rather than attempt to obtain data through Yahoo's public API, we chose to extract directly from their search
results page using our existing Agent Building technology. In this way, we were able to collect 8,853 total results.

2.1.3: Restaurant Extraction using Boorah
www. boorah. com is a web service that allows users to submit and rate restaurants in a given location [23].

Users are allowed to either "boo" (disapprove of) or "rah" (approve of) a given restaurant. The site tracks reviews,
descriptions and various categories of rating. It hosts a list of 7,354 restaurant features within the Chicago, IL
area.

We again leveraged our existing Agent Building technology in order to extract records from Boorah's web
service. During extraction, we realized that Boorah was limiting us to 1,000 results per category. In order to
attempt to retrieve all 7,345 results, we chose to narrow each search by a given food category; that is, though
7,345 results appear in their listing, only 140 of those exist within the "seafood" category. Unfortunately their
categories are ill-defined, making it difficult to programmatically extract all of their results. Using this piecemeal
extraction method, we were able to obtain 3,560 restaurant features from their website.

73

2.2: Additional Sources
Additional sources for restaurant feature extraction do exist, www.citysearch.com and www.yelp.com are

prime examples. We believe, however, that between Yahoo and Boorah, we've managed to extract a large subset
of the restaurants that exist within the Chicago, IL area. Though our dataset is sufficiently large to run analysis
on, these additional sources may warrant research and extraction in the future.

2.3: Neighborhood Name Extraction
Both Yahoo and Boorah contain neighborhood classifications already associated with the restaurant feature.

This made our extraction easy, since we didn't have to worry about parsing a description text field or attempt
multiple or single matching. Some of the records from Yahoo and Boorah did not contain associated neighborhoods
and were filtered out. After the filtering process, we obtained a total of 4,161 and 3,224 restaurant features
respectively.

One challenge of neighborhood extraction for our restaurant features was that the neighborhood listed by
Yahoo or Boorah did not always exactly match the list of neighborhoods we had obtained from the Google Earth
KML (e.p.'Toop" instead of "The Loop").

Using some minor string parsing techniques and human error correction, we obtained a final list of 3,849 valid
restaurant features for Yahoo and 2,990 for Boorah.

2.4: Geo-Coding Addresses
The process of geo-coding is to match an address to a latitude/longitude point on the globe. Unlike our

apartment features, the restaurant features from Yahoo and Boorah did not come pre-geo-coded.
Google offers a geo-coding service as part of their Maps API, which we used match the street address associated

with each restaurant feature to a latitude/longitude point [7]. The geo-coding process is simple: once we applied
for a Google Maps API key, we sent each address to Google's API and got a latitude/longitude point in return.

Using this API we were able to successfully geo-code 100% of our restaurant feature points.

2.5: Final Dataset
Since we created our restaurant feature dataset from two primary sources, we believed that there might exist a

non-trivial percentage of duplicates within our database. In order to ensure unique records, we chose to group our
listings on their latitude/longitude points as well as their associated neighborhood. In this way we could ensure
that each restaurant feature was a distinct location or, if two restaurant features shared a latitude/longitude
point, a distinct associated neighborhood. Using this grouping method, our final dataset contains 5, 480 unique
restaurant features.

6.2.3 Accuracy Analysis

At this stage in our analysis we were again only interested in a basic understanding of ground truth accuracy. We
used the same point-in-polygon winding algorithm to match each restaurant feature to its actual neighborhood area
as given by the Google Earth KMZ. Using this algorithm, we were able to match 4,945 restaurant features with
an existing neighborhood boundary. We again postulate that the remaining 535 restaurant features fall outside of
our given set of boundary areas.

Of the 4,945 restaurant features, we found that 49.32% matched our winding algorithm exactly. This percent-
age is much higher than our apartment feature's 31.8% match, which we postulate stems from our methods of
neighborhood name extraction. Since we were able to extract the restaurant feature's associated neighborhood
name directly rather than through text-field parsing, we believe the restaurants were more accurately classified.

Interestingly we did not see the same neighborhood-size relationship as with our apartment features. Within
the restaurant feature dataset, the Albany Park neighborhood contained 223 distinct features with only a 34.52%
accuracy, while the Brighten Park neighborhood, which is roughly the same size, contained 49 features with 100%
accuracy (the Magnificent Mile did not contain any restaurant features and is unavailable for comparison). We
believe that this once again has to do with the exact listing of neighborhood names within the restaurant feature
dataset rather than the string parsing required with the apartment feature dataset.

71

Figure 82: The opening stages of the Two Peasants algorithm.

Figure 83: A plot of the expected boundary (green) versus the extracted boundary (red) for Albany Park.

6.3 Visual Analysis

6.3.1 Visual Analysis

Since our goal with the neighborhood task is to represent neighborhood boundaries using the points in our dataset,
we wanted a simple way to express the set of points as a polygon. At first we attempted to plot them in the order
than we had collected each feature, but since this set is unordered, we ended up with a self-intersecting set of lines
rather than a distinguishable boundary.

After some initial research, we settled on the "Two Peasants" algorithm for generating a simple polygon out
of a set of points [26]. The algorithm is as follows:

1. Plot the points on an XY axis, where X-axis represents latitude and the Y-axis represents the longitude.

2. Locate the left most point (the point with the smallest X-value). Store this point as Xm,n

3. Locate the right most point (the point with the largest X-value). Store this point as Xmax

4. Draw a line between Xmin and Xmax. Store its slope as m.

5. Initialize two empty arrays, Top and Bottom

6. For each remaining feature point, if the point lies "above" the line between Xm,n and XmnT, place it in Top,
otherwise place it in Bottom

• In order to determine whether the point lies "above" or "below" the line:

(a) Take the X-difference between Xmin and the current feature point, P, store this as A.

(b) Find the expected height, H, for the line between Xmin and Xmax at point P by Xmin(y} + (m * A).

(c) If P(y) > //, place the feature point in Top, otherwise, place the point in Bottom.

7. Sort Top in increasing X values, sort Bottom in decreasing X values.

75

Figure 84: An overlay of polygons generated for Albany Park. The Convex Hull is shown in blue, the Ground
Truth in red and their intersection in green.

8. Initialize an empty array, Solution

9. Place Xmin 'n Solution, followed by each item in Top

10. Place Xmax in Solution, followed by each item in Bottom

11. Since we're looking for a closed polygon, place Am;n at the end of the array

Using this method, as illustrated in Figure 82, we draw a border in a clockwise manner around our set of
feature points, obtaining a non-self-intersecting polygon which we can use as our neighborhood boundary.

We can plot both our expected boundary and the boundary obtained from the Google Earth KMZ for visual
inspection. The downside of this method is that the boundary obtained from our "Two Peasants" algorithm
includes every point in the generated boundary, even points that could be assumed to be on the interior of the
polygon.

See figure 83 for a boundary plot on Google Earth in Chicago, IL.

6.3.2 Convex Hulls

The "Two-Peasants" algorithm uses all points in the dataset to create a closed, non-intersecting polygon. Although
this proved better for visual inspection than simply examining the cluster of points, it includes points along the
newly defined neighborhood boundaries that clearly lie on the interior of the polygon. The "Two Peasants"
algorithm did not provide sufficiently smooth or regular boundaries for further analysis.

Our research identified another polygon generating algorithm, that of the "Convex Hull". This methods cor-
rectly identifies points which lie on the exterior of the polygon, those of the boundary, and points which lie on
the interior of the polygon, which can be ignored in boundary generation. Using this algorithm, we are able to
generate simple polygons which can be used in advanced analysis.

In order to determine the convex hull for each neighborhood feature set, we chose to use the Python language
bindings for the popular OpenCV processing library [15]. All that is required to generate a convex hull is to
provide an unordered list of points to the library's "ConvexHull2" method, which returns the set of clockwise-
ordered boundary points that make up the polygon's convex hull. We ran this algorithm against each set of

7(i

neighborhood points tor each of our two feature sets, apartments and restaurants, and stored the polygons in a
database for later analysis.

6.4 Evaluation

6.4.1 Area Intersection

To refine our evaluation metric, we needed an algorithm that can compute the intersection of two polygons so that
we can use the algorithm for evaluating the intersection of the convex hull generated above with the boundary
suggested by the ground truth. We used a simple Polygon library written in Python [1(5]. This library extends
the General Polygon Clipping Library, a widely known C polygon library written by Alan Murta, with additional
methods written in Python.

Using the above area intersection algorithm, we generated the intersections of each of the convex hulls generated
using our dataset with the corresponding ground truth. Since the neighborhood boundaries provided by our ground
truth were already regular polygons, we were able to load them directly into the Polygon library by providing
t lie same (lock wise-ordered set of points that we extracted from our ground truth. We were t lien able to use the
"Intersection"' method (using the programmatic "&"', e.g."intersection polygon = polygonl & polygon2") to define
the polygon represented by the intersection of the given convex hull and its ground truth polygon.

Once we had the three polygons - the generated convex hull, the ground truth and their intersection - we were
able to use the "Area" method from the Polygon library to determine the area of each.4 As an illustration, Figure
84 shows these polygons generated for Albany Park.

6.4.2 Evaluation Metric

In order to assess the accuracy of the neighborhood boundaries generated by our algorithm, we defined a precision-
recall based metric. We combined the precision and recall values into an overall "Fl Score" for each neighborhood.

Precision We defined precision of the generated neighborhood boundary as the ratio of the area of the intersection
polygon to the area of the neighborhood boundary generated by our convex hull algorithm.

r, . . ^r^a(Intersection) , .*
Precision = — ; (-1)

Area(ConvexHull)

Since the area of the intersection can never be greater than the area of the convex hull, we know that if the
areas are equal, and the ratio is 1, then the entire convex hull must reside within the ground truth. A ratio less
than one indicates that (1 — ratio) • (100)% of the convex hull lies outside of the ground truth, meaning that some
of our extracted area is not accurate.

Recall We defined the recall of the generated neighborhood boundary as the ratio of the area of the intersection
polygon to the area of the neighborhood boundary as suggested by the ground truth.

/ifea i Intersection) ,_,
Recall = — (5)

Area(GroundTruth)

Since the area of the intersection can never be greater that the area of the ground truth, we know that if the
areas are equal, and the ratio is 1, then the entire ground truth is covered by the intersection. A ratio less than
one indicates that (1 - ratio) • (100)% of the ground truth lies outside of our intersection, meaning it was not
covered by our extraction.

Fl Score Finally, we combined the precision and recall metrics into the overall metric of Fl Score. The Fl Score
is defined as the harmonic mean of the precision and recall metrics. Specifically, the following formula can be used
to calculate the score:

precision • recall
Fi=2 — • - 6)

precision + recall
4Note that the "Area" method given by the Python Polygon library assumes a Cartesian coordinate system and ignores the fart

that our latitude and longitude points lie on a curved surface. However, since our analysis focuses primarily on the ratio between the
convex hull, intersection and ground truth polygons, and since we use the same area method for each, this error is mostly negated.
We also note that since our neighborhood areas are incredibly small compared to the earth's total surface, the curvature is negligible
for our analysis.

77

Feature Type Number of Areas Precision Recall Fl Score
Apartments 64 32.74% 62.45% .2847
Restaurants 83 56.28% 52.41% .4310
Combined Dataset 101 36.31% 65.98% .3330

Figure 85: Summary of the performance of the two dataset- Apartments and Restaurants, as well as the perfor-
mance of the combined dataset. Each dataset could generate boundaries for a subset of neighborhoods, represented
under "Number of Neighborhoods" column. The metrics of precision, recall and Fl score represent the perfor-
mance of the respective dataset, when averaged over the neighborhoods for which the dataset could generate the
boundaries.

^^I^^^^H^^^^HHBH I *•

s *• l"

i •* .. rj'
M » -

A
•

*-.'• •::. - \ ' i;

•'"I :'•
• • '- •...••.. •• : ." -•••'•: •

^t_ 0'- '»
- ^^- ' '1

1
Figure 86: A Google Earth map of the North Center neighborhood comparing the convex hull representations of
the apartment feature set (left) to the restaurant feature set (right).

6.4.3 Performance Results

The performance results for the apartment and restaurant feature sets are summarized in Figure 85. We find
that our restaurant feature set provides a much better Fl score. This correlates with our initial findings that
the point-in-polygon accuracy of restaurants was much higher than that of our apartment features. We also see,
however, that the coverage of restaurant feature set is higher, that is, the apartment feature set could generate
boundaries for 64 distinct neighborhoods, whereas our restaurant features cover 83 neighborhoods.

Additionally, we note that the low precision and recall scores may be due to limitations in our dataset. While
the restaurant data tends to be more precise, restaurant features tend to fall only on major roads. This causes
very linear formations of restaurant feature points once they are plotted on a map. The apartment data does not
have this problem, since apartments may be spread throughout the city; however, the text, extraction required by
the neighborhood parsing causes additional natural language errors.

78

Figure 87: A Google Earth map of the Hyde Park neighborhood comparing the convex hull representations of the
apartment feature set (left) to the restaurant feature set (right).

Precision Range Apartments Restaurants Combined
()'/ 166 148 131
1 - 10% 17 9 26
11-20% 13 4 17
21 - 30% 5 5 7
31 -40% 3 8 7
41 - 50% 4 3 7
51 - 60% 6 8 5
61 - 70% 3 11 7
71 - 80% 3 5 2
81 - 90% 1 4 6
91 - 100% 6 22 12

Figure 88: A binning of the precision scores from apartments, restaurants and the combination of the two.

6.5 Combination of feature sets

6.5.1 Combining Feature Sets

1: Motivation to combine the two dataset
It appears that there are multiple reasons that indicate that the two dataset - apartments and restaurants

may complement each other, i.e., if combined together, the overall dataset may perform better than each of the
dataset individually.

As our first reason, we believe that the two dataset when combined could generate the boundaries for a greater
number of neighborhoods. We found that there were only 44 neighborhoods for which both the dataset generated
boundaries; however, each dataset individually generated boundaries for a greater number of neighborhoods, i.e.,
apartment dataset generated boundaries for 64 neighborhoods, and restaurant dataset generated boundaries for
83 neighborhoods.

As our second reason, we thought that having more data points for each neighborhood, after combining the

7!)

Recall Range Apartments Restaurants Combined
0% 166 148 138
1 - 10% 5 4 5
11-20% 1 6 3
21 - 30% 3 5 3
31 - 40% 5 8 8
41 - 50% 9 15 9
51 - 60% 3 7 6
61 - 70% 5 10 9
71 - 80% 3 5 7
81 - 90% 5 9 1 1
91 - 100% 22 10 35

Figure 89: A binning of the recall scores from apartments, restaurants and the combination of the two.

Fl-Score Range Apartments Restaurants Combined
.00% 166 148 131
.01 - .10 11 6 15
.11-.20 14 8 20
.21 - .30 11 7 10
.31 - .40 2 8 11
.41 - .50 10 12 9
.51 - .60 8 16 14
.61 - .70 5 9 9
.71 - .80 0 11 7
.81 - .90 0 2 1
.91 - 1.00 0 0 0

Figure 90: A binning of the Fl scores from apartments, restaurants and the combination of the two.

apartment and restaurant dataset, we have a higher chance of covering the entire neighborhood, i.e., increasing
the recall.

As our final reason, although the average performance of restaurant dataset is superior to that of apartment
dataset, the apartment dataset performs better on a few neighborhoods.

We found that, although I he average per Ion nance on I' 1 score is lower lor apart men I feature set when compared
to restaurant dataset, there were 8 neighborhood instances where the Fl score of the apartment feature set was
higher than that of the restaurant dataset. For example, the neighborhood "North Center," as shown in Figure
86, is one such area; the apartment feature set produces an Fl score of 0.4484 while the restaurant feature set is
only 0.0361. We note from the KMZ map that the apartment feature set is fairly accurate whereas the restaurant
feature set contains several points that are far from the ground truth.

On the other hand, we found 36 neighborhoods in which the restaurant feature set performed better than the
apartment feature set. For example, the neighborhood of "Hyde Park'' is one such area, as shown in Figure 87);
the apartment feature set produces an Fl score of 0.1189 while the restaurant feature set is only 0.7507. We note
from the KMZ map that the restaurant feature set is fairly accurate whereas the apartment feature set contains
several points that are far from the ground truth.

In all of the cases, we observed that the major factor for our dataset giving a lower Fl score is due to
significantly lower precision for that dataset. caused by points far from the ground truth boundary. Interestingly.
we also observed that in many cases the recall of the dataset giving a lower Fl score feature is higher much
higher in the Hyde Park case-than the dataset giving a higher Fl score.

2: Performance of the combined dataset
We combined the two dataset apartments and restaurants - to obtain a total of 7874 distinct feature points

in the combined dataset. Due to the higher point-in-polygon accuracy of our apartment feature single match

80

approach, we decided to ignore the points extracted through multiple matching and only include the single match
points with our neighborhood points. From this list, we kept the distinct set of features based on their latitude and
longitude points as well as the expected neighborhood, which resulted in a total of 7874 features in the combined
dataset.

As reported in Figure 85, the combined dataset generated the boundaries for 101 distinct neighborhoods far
greater than the number of neighborhoods for which either apartment or the restaurant dataset could generate
the boundaries alone.

In the same figure, we also observe that the average Fl score of the combined dataset drops below the average
Fl score of the restaurant dataset. This may be possible since performance of apartment dataset was superior
to restaurant dataset only for 8 neighborhoods, while the restaurant dataset performance was superior for 36
neighborhoods.

To investigate further, we created a set of binning for precision, recall and Fl score across our three dataset
(apartments, restaurants and their combination), as seen in Figure 88, 89 and 90, respectively.

In each bin, we noticed that the number of neighborhoods increase in the combined dataset as compared
to the apartment or the restaurant dataset, indicating the improved coverage of the combined dataset with its
greater number of points. Further, in Figure 88, which shows the binning results for precision, we notice that
the number of neighborhoods increases most sharply in the 1 — 20% bin, indicating the coverage of additional
neighborhoods results in a reduction of precision. This is expected since an increase in the number of points
increases the probability that many points will lie outside the ground truth boundary. Likewise, in Figure 89, we
also see that the recall increases most sharply in the bin of 80 - 100% - with additional points, the combined
dataset has greater chance of covering the full neighborhood boundary as described by the ground truth.

We see that, in the Fl score bin, the combined dataset results in better performance specifically in the higher
ranges when compared to the apartment dataset; however, in the higher range of Fl scores, combined dataset
performs much worse than the restaurant dataset. Overall, we found that, in the combined dataset, only 17
neighborhoods increased their apartment Fl score, while 19 dropped. Likewise, only 18 neighborhoods increased
their restaurant Fl score, while 35 dropped.

In summary, we found that the combined dataset produces higher recall for all neighborhoods, as well as that
it can generate boundaries for a greater number of neighborhoods; however, this improved performance comes at
the cost of lower precision, which results in a drop in the average Fl score for the combined dataset.

6.6 Outlier detection

6.6.1 Need for Detecting Outliers

We observed that, to improve the accuracy of the neighborhood boundaries, we must improve the precision of
the generated boundaries. The combined dataset can give high recall higher than 80% for a large fraction,
46 neighborhoods out of the total of 101 neighborhoods, for which it could generate boundaries. In contrast, the
combined dataset had low precision lower than 20% - for 43 neighborhoods.

To improve the precision, we need to detect the far-off "outlier" points, which reside away from the core center
of the cluster of "good" points. The reason for the lower precision is that a few datapoints lie far-off from the act ual
neighborhood boundary, and result in the convex hulls that cover a large area outside ground truth boundary. As
illustrated in Figure 91, for the small Hyde Park neighborhood (which has been home to President Barack Obama,
and is home to University of Chicago), our dataset contains a few points located far-off from the cluster of core
points that correctly fall inside or close to the ground truth boundary.

6.6.2 Related Work

The problem of grouping a set of points and removing a few outlier points is related to various existing work in
machine learning literature.

Clustering: There is a large body of research on clustering a set of points into homogeneous groups (e.g.,
CLARANS [92], DBSCAN [80], BIRCH [93], STINC [100], WaveCluster [69], DenClue [40], CLIQUE [83]). These
algorithms typically require a pre-defined number of clusters or the threshold on the similarity metric as input,
and are tuned towards partitioning the complete dataset into the desired number of clusters. For our scenario, we
are looking for only one cluster as a result, so the solutions that partition the dataset into multiple clusters are
not adequate.

8]

Figure 91: The Hyde Park neighborhood illustrates the need to detect far-off points to improve precision. The
neighborhood boundary generated by our combined dataset (shown in blue) covers much larger area than the
boundary of ground truth (shown in green).

Classification: A related set of techniques have been developed for classifying data points into multiple classes.
These techniques generally require a labeled dataset for the training phase, and attempt to build a predict ion model
based on the properties of each point. For our problem, we do not have any features other than the coordinates
of the points. Thus, each point by itself is not sufficient to determine if it should be kept in the analysis, or
considered as an outlier point.

Outlier Detection: Several algorithms have been developed, especially in the statistics literature, for detecting
points that appear to be "abnormal," i.e., not following the general distribution such as Normal, Poisson, etc..
[97]. Many of these algorithms assume that the dataset comes from a certain underlying distribution, which does
not hold true for the neighborhood dataset. Custom algorithms have also been developed for specific problems of
fraud detection [91, 99]. These are not applicable to our scenarios of generating neighborhood boundaries. Some of
the adaptations of the outlier detection work attempt to define the distribution of different properties of the data
points, and predict the outliers as the ones following extreme values in one or more dimensions [50, 74]. These are
again not applicable to our analysis as our data points have only two properties - latitude and longitude, which
make the points indistinguishable without knowing the size of the neighborhood we are looking for.

Spatial Clustering: Perhaps the most relevant work to our problem is the Clustr algorithm [5], developed for
the specific problem of generating neighborhood boundaries using tags of Flickr images. Unfortunately, the details
of the algorithm are not available publicly. The source code was made open source, but it appears to be currently
inaccessible.

Therefore, we decided to develop our own "Clustering" algorithms which will detect the central cluster of
interesting data points while removing those outlier points that lie far-off.

6.6.3 Design Requirements for Clustering Algorithms

We faced three main challenges while designing our clustering algorithms. The first is that each algorithm must
work across a very general, varied set of neighborhoods. That is, not every neighborhood will be identical in the

N2

•IHi 1 •• » !•> >,„' 1 1 •
<P :'

•
1 •••••••^••••i • ̂ ^^^^H

^^H ' - £*'": ' • H
"..-•— •*?-., '-.1

^^^HI^HH i^^^^HIH

Figure 92: The West Elsdon (top) and Roscoe Village (bottom) neighborhoods. West Flsdon is an example of
when Median Cluster works poorly, while Roscoe Village is an example of when Median Cluster works well. Yellow
pins outside of the convex hull (blue) are points that have been removed. The ground truth is shown in green.

distribution of the "cluster + outlying points" shape - some contain two distinct clusters while others contain no
discernible clusters whatsoever; furthermore, the points for some neighborhoods may already be in a homogeneous
cluster, and so, should not require additional processing. Therefore, any algorithm that we design must either
work positively on every configuration of points or at least work out more positively than it does negatively on an
average.

The second challenge is that the usage of the ground truth should be limited to fine-tuning the parameters of
the algorithm; however, the existence of such ground truth cannot be assumed for deployment scenarios. While
we are using Chicago, IL as our target geography to develop the algorithms, the goal is to deploy these algorithms
in geographies in which the ground truth is not available. Therefore, we cannot use the existing ground truth to
make direct decisions about which points to exclude from our cluster core. For example, we cannot use statistics
such as typical size, width, or height of the ground truth in our calculations. We can, however, use the ground
truth and Fl scores to fine-tune the configuration parameters of our algorithms.

The third challenge is that, since all of our algorithms must focus on removing points from a neighborhood set,
we must be careful to develop algorithms that can work successfully on relatively small sets of points. That is, an
aggressive algorithm that removes large number of points is not so valuable, since, to begin with, some portions
of our dataset contains small numbers of points for some of the neighborhoods.

Accounting for these challenges, we developed four different clustering and outlier detection algorithms, as
described in following sections: "Median Cluster," "Nearby Cluster," "Circle Cluster" and "Negative Cluster."

6.6.4 Median Cluster

The idea behind the "Median ('luster" algorithm is that, given a distribution of points, all points in the "cluster"
will be close together relative to the outlying points. Specifically, given a point, if the point exists within the
"cluster", some percentage of other points should exist within the median distance of the whole point set.

The algorithm operates as follows:

1. Calculate the median of the distance between all pairs of the points.

• That is, for each point, calculate the distance from it to each other point, sort these by length and find
the median.

83

Threshold Neighborhoods Precision Recall F\ Score
10.00% 0 0% 0% .00
20.00% 6 82.12% 0.11% .0022
30.00% 68 68.04% 6.02% .0981
40.00% 84 66.41% 18.88% .2517
50.00% 84 62.39% 32.98% .3723
60.00% 84 59.57% 43.47% .4286
70.00% 84 56.71% 51.52% .4599
80.00% 84 54.74% 57.90% .4847
90.00% 84 49.71% 64.18% .4786
100.00'/ 84 31.74% 74.08% .3400

Figure 93: Summary of the performance of the Median Clustering algorithm at different values of threshold. For
each threshold, the summary shows the number of neighborhoods that generated boundaries after applying the
clustering algorithm, as well as the average performance with respect to precision, recall and Fl Score.

2. Initialize an empty set to hold all valid "cluster" points.

3. Establish a threshold percentage for which a point must have fewer distant neighbors relative to size of the
neighborhood set.

4. For each point in the set:

(a) Initialize a counter to zero.

(b) Calculate the distance between the given point and each other point.

• If the distance is higher than the median distance of the set of points, increase the counter by one.

(c) After all points are checked, see if the ratio of counter to total points is less than the threshold percentage.
If it is, add it to the valid cluster set.

Using this method, we find that the outlying points are generally removed. The drawback of this method is
when our points are already clustered within the ground truth. We find that the "Median Cluster" algorithm will
then remove the outlaying cluster points, which drastically reduces recall inside the neighborhood. As illustration,
Figure 92 shows examples of neighborhoods in which Median Clustering algorithm performs well vs. not so well.

Since this algorithm requires an external variable - the threshold percentage for cluster inclusion we set about
discovering a way to determine the best value in a dataset agnostic way. Since our goal is ultimately to discover
unknown neighborhood boundaries, and since we believe that, while the term for and definition of "neighborhood"
may change from one locality to another, the general size should not. Therefore, we chose to test a number
of thresholds against our current ground truth and select the best as the optimum "general" value. This way,
though the selection of our threshold value is dependent on the ground truth, the distribution of points across all
neighborhoods should serve to make our value selection general enough to work on any set of neighborhoods.

The performance of the Median Clustering algorithm across different threshold values is summarized in Figure
93. We observed that, for small values of threshold, i.e., for situations in which we are expecting a large percentage
of points to be far away, the number of neighborhoods for which the boundary could be generated is very small.
As the threshold increases, we classify a greater number of points as valid cluster points, increasing our recall.
At the same time, as additional points are included, the chance that a given point may be outside the ground
truth increases, thus precision begins to drop. Eventually we reach an equilibrium between decreasing precision
and increasing recall. At this point, our maximum Fl score is reached and the optimum value of the threshold is
found. As the threshold increases further, precision begins to drop faster than the recall increases. We find the
optimal threshold for the median clustering algorithm at roughly 80%, that is, for a given cluster point, 80% of
the other points are allowed to be further than the median distance.

At the optimum threshold value, we are able to raise our average Fl score from 0.3330 for original dataset
to 0.4847 using the Median Clustering algorithm. However, we are able to generate boundaries for only 84
neighborhoods using the Median Clustering algorithm instead of all 101 neighborhoods with original dataset. This
is because many of our neighborhood sets are very small (4 or 5 points) to begin with and thus, once we begin
removing additional points, these sets might become too small to properly create a convex hull.

SI

Figure 94: The West Garfield (left) and East Garfield (right) neighborhoods. West Garfield is an example of when
Nearby Cluster works poorly, while East Garfield is an example of when Nearby Cluster works well. Yellow pins
outside of the convex hull (blue) are points that have been removed. The ground truth is shown in green.

Threshold Neighbors Neighborhoods Precision Recall Fl Score
120.00% 1.00 84 40.13% 69.63% .4126
120.00% 2.00 84 44.80% 68.33% .4483
120.00% 3.00 84 45.96% 66.56% .4536
130.00% 1.00 84 39.95% 70.38% .4163
130.00% 2.00 84 44.00% 69.05% .4432
130.00% 3.00 SI 45.56% 67.66% .4553
140.00% 1.00 84 39.55% 70.74% .4146
140.00% 2.00 84 43.54% 70.00% .4457
140.00% 3.00 84 44.88% 68.65% .453S

Figure 95: Summary of the performance of the Nearby Clustering algorithm at different values of threshold. For
each threshold, the summary shows the number of neighborhoods that generated boundaries after applying the
clustering algorithm, as well as the average performance with respect to precision, recall and Fl Score.

6.6.5 Nearby Cluster

The idea behind the "Nearby Cluster" algorithm is that, given a distribution of points, a point is more likely to
be a valid cluster point if there are one or more points directly adjacent. That is, if a point lies by itself, it is
reasonable to assume that it is an outlier and discard it from analysis.

The algorithm operates as follows:

1. Calculate the median of the distances between all pairs of points.

• That is, for each point, calculate the distance from the point to each other point, sort these by distances
and find the median.

2. Initialize an empty set to hold all valid "cluster" points.

3. Initialize two variables, a number of other points that must be "near" a given point and the ratio of the
median distance that we designate as "near".

4. For each point in the set:

(a) Initialize a counter to zero.

(b) Calculate the distance between the given point and each other point.

• If the distance is less than the designated ratio of the median distance, increase the counter.

85

Figure 96: The University Village (left) and Old Town (right) neighborhoods. University Village is an example of
when Circle Cluster works poorly, while Old Town is an example of when Circle Cluster works well. Yellow pins
outside of the convex hull (blue) are points that have been removed. The ground truth is shown in green.

Threshold Neighborhoods Precision Recall Fl Score
10.00% 65 61.30% 30.88% .2733
20.00% 84 51.87% 40.93% .3200
30.00% 81 48.90% 52.40% .3670
40.00% 84 45.12% 62.13% ,1060
50.00% 84 40.89% 67.60% .4024
60.00% 84 38.93% 70.10% .3942
70.00% 84 37.16% 71.81% .3838
80.00% 84 34.74% 73.68% .3646
90.00% 84 32.48% 74.75% .3506
100.00% 84 31.74% 74.08% .3 100

Figure 97: Summary of the performance of the Circle Clustering algorithm at different values of threshold. For
each threshold, the summary shows the number of neighborhoods that generated boundaries after applying the
clustering algorithm, as well as the average performance with respect to precision, recall and Fl Score.

(c) If the counter is greater than or equal to the designated number, place it in the set of valid "cluster"
points.

We rely on the "median" distance of points in the set to define "nearness," since we can't directly use our
ground truth values. The drawback of this method is that several of our neighborhood sets contain fairly sparsely
populated sets of data. As the number of points in a neighborhood set decreases, it becomes increasingly likely
that the "Nearby Cluster'' algorithm will begin to throw away points that should be valid. That is, if the core
cluster is sparse, the algorithm may discard points too aggressively. As an illustration, Figure 94 shows examples
of neighborhoods in which Nearby Clustering algorithm performs well vs. not so well.

We summarized the performance results in Figure 95 for subset of the combinations of the two configuration
parameters - threshold on distance and the number of neighbors. We varied the number of neighbors from 1-5,
and the threshold on the distance from 10 - 200%. We found that the performance of this algorithm peaks
when there are at least 3 neighbors for a given point. We also see that the optimum ratio of median distance is
approximately 130%. This algorithm still performs better than our base combined data set, giving us a peak Fl
score of 0.4553, but we note that it does not perform as well as the median algorithm.

6.6.6 Circle Cluster

The idea behind the "Circle Cluster" algorithm is that, given a large, dense cluster, the weighted center of the set
of points should reside somewhere within or nearby the cluster. Using this assumption, we can include all of the

86

Figure 98: The Chicago Lawn (left) and McKinley Park (right) neighborhoods. Chicago Lawn is an example of
when Negative Cluster works poorly, while McKinley Park is an example of when Negative Cluster works well.
Yellow pins outside of the convex hull (blue) are points that have been removed. The ground truth is shown in
green.

points within a certain radius of the weighted center as valid cluster points.
The algorithm operates as follows:

1. Calculate the median of the distances between all pairs of points.

• That is, for each point, calculate the distance from the point to each other point, sort these by length
and find the median.

2. Initialize an empty set to hold all valid "cluster-' points.

3. Initialize a threshold percentage of the set's median distance from the weighted center where a point is
considered "valid".

4. Calculate the weighted center of the set of points.

• Take the sum of the X components and the sum of the Y components of all points in the set, divide by
the size of the set.

5. For each point in the set:

(a) Calculate the distance between the given point and the center point.

(b) If the distance is less than the designated ratio of the median distance, place the point in the set of
valid "cluster" points.

This method works very well for a neighborhood which contains tightly clustered points with outlier points
reasonably far-off. However, if the outlier points are not far-off, the median distance of the set of points will be
very small and the clustering algorithm will begin trimming valid points that exist very close to the center of
the cluster. As an illustration, Figure 96 shows examples of neighborhoods in which Circle Clustering algorithm
performs well vs. not so well.

We summarized the performance results of the Circle Clustering algorithm under different values of thresholds
in Figure 97. We noticed that, although we maximize our Fl score at the threshold of 50%, the Fl score of the
Circle Clustering algorithm tends to perform much worse than either the Median or Nearby clustering algorithms.
We postulate that this is because a large portion of our neighborhood sets are already strongly clustered, thus we
end up removing neighborhood points that should, in fact, remain valid.

87

Threshold Percentage Neighborhoods Precision Recall Fl Score
10.00% 50.00% 84 42.07% 60.54% .4043
10.00% 60.00% 84 40.95% 66.48% .4121
10.00% 70.00% 84 39.31% 68.829? . 1009
20.00% 50.00% 81 48.40% 52.79% .4099
20.00% 60.00% 82 47.06% 58.45% .4327
20.00% 70.00% 82 44.17% 63.11% .4223
30.00% 50.00% 78 52.61% 45.11% .3974
30.00% 60.00% 82 50.25% 50.74% .4103
30.00% 70.00% 82 47.87% 57.10% .4297

Figure 99: Summary of the performance of the Negative Clustering algorithm at different values of threshold. For
each threshold, the summary shows the number of neighborhoods that generated boundaries after applying the
clustering algorithm, as well as the average performance with respect to precision, recall and Fl Score.

6.6.7 Negative Clustering

The idea behind the "Negative Clustering" algorithm is that, since our neighborhoods are adjacent to one another,
an outlying point from a given neighborhood has a high probability of existing near a cluster from another
neighborhood. Therefore, if a given point is near a large percentage of points which claim to be from a different
neighborhood, it is probably an outlying point and can be marked as invalid.

The algorithm operates as follows:

1. Calculate the median of distances between all pairs of points.

• That is, for each point, calculate the distance from it to each other point, sort these by length and find
the median.

2. Initialize an empty set to hold all valid "cluster" points.

3. Initialize a threshold percentage of nearby non-set points where a given point will be considered invalid.

4. Initialize a percentage of the median set distance that will serve as "nearby."

5. For each point in the set:

(a) Determine the number of points from the entire dataset which exist within the designated median
distance ratio of the given point.

(b) Determine the number of points from the entire dataset which exist within the designated median
distance ratio of the given point and also claim to belong to another neighborhood.

(c) If the ratio of points which claim to belong to a different neighborhood to the total points is less than
the threshold percentage, place the point within the set of valid "cluster" points.

This method works well in almost all cases, as long as our dataset is dense enough to provide a reasonable
degree of negative-example categorizing points. The benefit of this method is that it has a very low likelihood of
removing valid points even in sparse neighborhoods, since it is generally unlikely that a valid point will be near
a cluster of another neighborhood's points. The only scenario in which valid points are removed is when there is
a single point on a neighborhood's border which is also close to a neighborhood with very dense borders. As an
illustration, Figure 98 shows examples of neighborhoods in which Negative Clustering algorithm performs well vs.
not so well.

We summarized the performance results of Negative Clustering algorithm under different values of thresholds
in Figure 99. The algorithm consists of two configuration parameters - the threshold on median distance, and
the ratio of points in different neighborhood to total points. We varied both the parameters from 0.1 - 1.0, and
presented the results in Figure 99 for a subset of the combinations. We found that the results from our Negative
Clustering algorithm are fairly stable; it gives peak performance at 20% of median distance with a 60% invalid to
total ratio, resulting in an Fl score of 0.4327.

Name Advantages Disadvantages Best Use
Median Cluster Works well when outly-

ing data exists
If no outlying cases, algo-
rithm may remove valid
points

Strong clusters with
some outlying points

Nearby Cluster Works well with strong
clusters

If data is spread evenly
or very few points, algo-
rithm may remove valid
points

Strongly clustered data
with some outliers

Circle Cluster Works well when outly-
ing data exists

If no outlying cases, algo-
rithm may remove valid
points

Strong clusters with out-
lying points

Negative Cluster Works well in almost any
dataset

Requires access to a sig-
nificant amount of "neg-
ative" data

Filtering outlaying
points based on negative
example's

Figure 100: Summary of the different outlier detection algorithms.

6.6.8 Algorithm Chaining

We can see from Figure 100 that each outlier detection algorithm has advantages and disadvantages. We further
postulated that it may be beneficial to use two or more clustering algorithms in tandem to achieve better results
than we might with only one algorithm. We must, however, continue to balance the number of operations that are
performed on a neighborhood set against the initial size of the set. That is, a smaller set will be able to support
fewer operations before it no longer contains enough points to generate a valid convex hull.

With this in mind, we chose to limit our chain to two algorithms, specifically the Median Clustering and
Negative Clustering operations. We chose Median Clustering because it performed the best of the three algorithms
that work directly to identify the set of clustered points within a dataset. We believe that it is complemented well
by Negative Clustering as the later has a smaller likelihood of removing valid data points.

Using the two algorithms in sequence - Median Clustering and Negative Clustering - with the optimum values
of the configuration parameters as determined before, we were able to generate boundaries for 70 neighborhoods
with an average Fl score of 0.5073.

6.6.9 Performance on Individual Dataset

We also wondered how well our clustering algorithms improve the performance of individual dataset. We generated
the neighborhood boundaries for each of the apartment and restaurant datasets, after applying our Clustering
algorithms. We found that our apartment feature set generated boundaries for 59 neighborhoods and improved the
Fl score to 0.4158. Likewise, the restaurant dataset generated boundaries for 62 neighborhoods, while increasing
the Fl score to 0.4819.

The impact of combining the two datasets is different across different neighborhoods. For the 59 neighborhoods
for which the apartment dataset could generate boundaries, we saw that the combined dataset improved the Fl
score for 31 cases, while it dropped the Fl score for 19 cases, and stayed at the same level for remainder of the
cases. Likewise, out of the 62 neighborhoods for which the restaurant dataset could generate boundaries, the
combined dataset improved the Fl score for 28 cases, while it dropped the Fl scores for another 16 cases, and
stayed at the same level for remainder of the cases.

It is difficult to predict if the combined dataset will perform better or worse than the individual dataset for a
given neighborhood; however, we found that the combined dataset can always generate boundaries for a greater
number of neighborhoods and keeps the Fl score relatively high. So overall, a combined dataset will usually be
more helpful.

6.7 Improving extraction methods

In an attempt to understand the natural language errors that may influence the accuracy of our neighborhood
prediction within the apartment feature set, we assigned an analyst to examine 46 random feature points that

S!)

Total points inspected 46

Community Area 6
"Nearby" 7
Feature 16
Unambiguous 17

Figure 101: Breakdown of various types of ambiguity errors associated with the natural language parsing of
Apartment feature descriptions.

were known, based on the point-in-polygon winding algorithm, to be outside of the ground truth.
To facilitate the inspection of the feature points, we placed these points, along with their description, address

and expected neighborhood, on to a Google Earth KMZ map. We also included a map of the currently derived
Chicago, IL, neighborhood boundaries. The breakdown of the different errors are summarized in Figure 101. We
inspected each category of errors in more detail, as described in the following sections.

6.7.1 Resolving Extraction Ambiguities

1: Community Area Ambiguity
We postulated that, in some cases, an apartment's description could reference a community area rather than

a neighborhood. Community areas are explicitly defined by a government agency in order to facilitate local
organization of a city's resources. They are often larger than neighborhoods, many times including several distinct
neighborhood areas within one community area.

Of the 46 neighborhood points examined, 6 share this type of ambiguity. Figure 102 shows an example of
community area ambiguity. Of the 227 neighborhoods of Chicago, IL, 61 share the name with a community area,
of which 51 neighborhoods are ones for which our combined algorithm generated the boundaries.

Unfortunately, apartment descriptions rarely distinguish "community area" or "neighborhood," so it would be
very difficult to differentiate one type of description from the other. We cannot simply ignore all neighborhoods
that share a community area name either, since the affected neighborhoods make up roughly 2/3 of all collected
areas. It may be possible to collect polygons for each community area and exclude points that exist within the
community area; however, community areas and neighborhoods of the same name often overlap. This might cause
the removal of many valid points simply for the sake of excluding a couple of invalid ones.

In this case, it may only be that we know to be careful about the Fl scores generated by the shared-name
neighborhoods.

2: Nearby Ambiguity
After analyzing neighborhood points, we found many that used "close by" terms such as "within walking

distance," "nearby," and "minutes away from." These are inherently ambiguous terms which can range in distance
from only a hundred yards to several miles, depending on the method of travel. Figure 103 shows one example of
this type of ambiguity. The description for the example apartment feature reads, "A modern design 20 story high
rise building featuring beautiful and natural surroundings of Lake Michigan and Rainbow Beach. .lust minutes
away from Hyde Park and downtown Chicago." We classified it as "Hyde Park" since no other neighborhood is
mentioned. However, the apartment feature turns out to be nearly 2.5 miles away.

We believe it is possible to remove a subset of apartment features that contain this ambiguity. The problem
is that there are too many "nearby" phrases, so it is difficult to enumerate them all, and capture all such invalid
points. Also, if "nearby" really does mean within feet instead of miles, we may be removing a potentially valid
apartment feature. It is also possible that we may be removing entries that use "nearby" language in reference
to something other than a neighborhood. We prepared a list of nearby phrases, and matched them against our
apartment dataset to determine their frequency, as summarized in Figure 104.

3: Feature Ambiguity We noticed that a neighborhood is sometimes named for a nearby geographic feature
such as a park or local monument. This can lead to problems because, if the feature is sufficiently large, it can be
bordered by several neighborhoods, any of which can contain apartment features that reference it. See figure 105
for one such example. This feature reports that it is close to "Harold Washington Park," which was selected as
"Washington Park."

90

71 IS"

\ / 11 it'
Figure 102: An example of ambiguous community area/neighborhood distinction. The apartment pin (yellow)
reports that it's in the Chatham neighborhood (green). We can see the Chatham community area (#44 on the
white overlay) is actually much closer, leading to possible ambiguity.

In addition to geographic features, we notice this same ambiguity with roads and highways. These are even
more inaccurate because often the road does not exist anywhere near the reported neighborhood. For example.
"Woodlawn Ave", "South Shore Dr.," and "Wrightwood Ave." are all roads that share their name with a neighbor-
hood. Therefore, if an apartment feature holds the address in its description, e.g. "IMC Property Management
Contact: 4521 S Woodlawn Ave Chicago, IL 60653-4407 Phone: 773-373-4300 Unit Type: Unspecified," we will
select it as belonging to the "Woodlawn" neighborhood.

The last type of feature ambiguity is related to common phrases. We noticed that, for the "Lake View"
neighborhood, we were picking up what seemed to be an abnormally high number of inaccurate apartment feature
points. After analysis, we discovered that many apartment descriptions feature this phrase as a descriptor instead
of a neighborhood, e.g. "...Spacious corner unit with city and lake views Plenty of living and storage space..." Of
the 116 feature points that report the "Lake View" neighborhood, we found 51 that referenced the "lake views"
plural descriptor. Of the remaining feature points, many still use "lake view" as descriptor, though since the
descriptor and neighborhood name match exactly, it becomes extremely difficult to separate them.

It may be possible to cross reference a gazetteer of geographic features in order to remove the first type of
feature ambiguity in the future. We were able to successfully remove 121 apartment features whose neighborhood
was derived from their address rather than their description. In addition, we chose to remove the "Lake View"
neighborhood entirely.

4: Unclassified / Unambiguous
We found that 17 of the 46 analyzed points were marked as "Unambiguous" by our analyst. These are apartment

feature points whose descriptions seem to be unambiguously claiming to belong to a specific neighborhood and do
not meet the criteria for inclusion with any of the other ambiguous-error categories.

!)l

Figure 103: An example of the "nearby" ambiguity. The apartment pin (yellow) reports that it is just "minutes
away" from Hyde Park (red).

Phrase Points Removed
"walking distance" 153
"nearby" 68
"minutes away" 26
"minutes from" 57
"close by" 24

Figure 104: A breakdown of various "nearby" phrase usage.

An example of one such description is, "Affordable apartments in South Shore Chicago, fully furnished with
brand new appliances, hardwood floors, on-site laundry and more units with free Wi-Fi Internet. 24/7 security
cameras to provide safety and a 24 hour maintenance hotline." We postulate that these entries are either incorrectly
marked by their poster or, as may be the case in this specific entry, a set of several entries incorrectly marked with
a very general apartment description.

5: Incomplete Address
We had previously developed a very simplistic method for detecting incomplete addresses, that is, if an address

did not start with a numeric digit, we assumed it was incomplete. This removed entries such as, "N Western,
West Side, Chicago, IL 60612" and "Orchard St, North Side, Chicago, IL 60614" which do not provide enough
information to geo-code to a latitude/longitude point. In addition, we found that some apartment features had
addresses such as "22nd Street, Chicago, IL" or "31st Street, Chicago, IL." These addresses were also invalid, but
were not caught by the numeric digit check. We noted that these addresses are generally much shorter than a full
address and, by filtering addresses with 22 characters or less, we were able to successfully remove 21 such entries.

92

m.zi---..:

J">. • -I
S ti '

m «• ••juries -
<~n,-sm »•' jit i>- !-a "it-

, i '- - !•*

-
2 §a \iM

.--

. ,J J •-

3
..:••. i - • .
;r--- "-. I. '• - r : i

f

1 -- V

Figure 105: An example of the "feature" ambiguity. The apartment pin (yellow) reports "Harold Washington
Park,'' (green), which was selected as "Washington Park" (red).

6.7.2 Performance Improvement from Removing Ambiguities

From our analysis of different reasons for extraction errors, and removing ambiguities as described above, we
removed 471 of 2030 prior known apartment features. Upon this dataset, when we apply our neighborhood
boundary generation algorithm, we obtain boundaries for 59 neighborhoods, with an average Fl score of 0.3126.
The original dataset, without removing ambiguity, generated boundaries for 64 neighborhoods, with an average
Fl score of 0.28. Thus, removing the ambiguity errors does result in an improvement in the performance. To put
things into context, we should note that the original apartment dataset, followed by removing the outliers using
our clustering algorithm, resulted in boundaries for 59 neighborhoods with an average Fl score of 0.41.

Overall, it seems that removing ambiguities linguistically leads to improved performance; however, our clus-
tering methods yielded greater improvement in performance.

6.7.3 Targeted Extraction using Location Tokenization

As another tool to improve our extraction accuracy, we started initial exploration of a location tokenization
technique. Our current method of neighborhood name extraction uses the full text from the description field of
apartment features. This simplistic method results in choosing many data points with ambiguities that might be
avoided with a more sophisticated approach.

To increase the precision of neighborhood name extraction, we decided that tokenizing the description string
into lexical fragments would allow us to more precisely extract neighborhood names. After some initial research,
we discovered http://tagthe.net/ a website that, when fed a length of text, will break the text into various
tags, http://tagthe.net even goes so far as to categorize the tags based on type, including a "location" section.
We chose to use this "location" section of tags in order to extract the neighborhood name for a given apartment
feature. See figure 106 for an example of an apartment description and set of returned tags.

Using an API provided by tagthe.net we were able to extract location-based tags for 2104 of our apartment
features. Of these, we were able to discover single, valid neighborhood names for 412 apartment features. Note
that the location-based tagging significantly reduces the number of apartment features that may contribute to
generating neighborhood boundaries.

93

Enter text Enter your t«xt to check out tho togs.

7549 S Yates is a beautiful 27-unrt building featuring 2
Bedroom units at great prices! Enjoy life in out excellent
South Shore location, with easy access to transportatwi,
shopping, and entertainment choose from a variety of
spacious apartments, each with ample closet space and
modern amenities 7549 S Yates is nght where you want
to be •• Immediate move ins available1 Section 8
accepted Please call for details

•i'.m

You wanted some tags? Here you are!

urn memanage:2C3A480D8DF5FEA0BDF05975CE50C0C4

topic
entertainment access shopping transportation En|oy
Bedroom location life building unit

person

location

language
enghsh

Figure 106: An example of the tags produced by tagthe.net for a given text string. We see that this apartment
probably belongs to "South Shore."

We found that the apartment features obtained using location-tagging could generate boundaries for 17 neigh-
borhoods, with an average Fl Score of 0.3362, much higher when compared to the base Fl score of 0.2847. The
higher Fl score for this method indicates better extraction precision, since our extraction is now limited to the
text classified as location tags, which can avoid several of the ambiguities in extraction.

We do note, however, that the location-tagged apartment features are far fewer, which results in a significantly
smaller number of neighborhoods for which this method can generate boundaries. It may be possible to build our
own string tokenizer/tagger with the ability to specify more specific known locations, in this case, lor example,
the Chicago, IL neighborhoods.

6.7.4 Gathering Additional Restaurant Data

We had previously found that the restaurant feature dataset provided higher accuracy than the apartment dataset,
simply because the restaurant features were manually labeled into their respective neighborhoods in contrast
to our automatic text extraction for apartment features. In order to further improve the performance of our
algorithms, we decided to gather additional restaurant features for our dataset.

1: Extraction of Restaurant Data
After an initial survey, we selected two additional sites for data extraction: Zagat. com and OpenTable. com.

Both of these sources are well regarded in the restaurant industry. We believed that these would provide an
excellent number of additional restaurant features for analysis.

Using our existing agent-based crawling ability, we were able to extract 1778 restaurant features from Zagat
and 305 restaurant features from OpenTable. Note that some of these features specified neighborhood names that
did not follow the same dictionary as our normalized ground truth dictionary. Therefore, we applied the "name
matching" methods, as previously described, to match attempted the text-string "neighborhood" field of each
feature to our database of known neighborhoods. As result, we were able to obtain 976 features from Zagat, and
175 features from OpenTable.

Of these, there were some duplicates within the same source of data as well. So, we de-duplicated the feature
set from each source using latitude and longitude as well as the reported neighborhood feature. In this way, we
remove the duplicates within each source of data. After this cleaning, we were left with 911 features from Zagat
and 169 from OpenTable.

9 1

Classify ados gratis SAo Pauta 3 MBUOLX I Fntrai ou fitolif

I - Apartamenco • CM* * *

h*! Apartamento Casa a verwla

ApTtamento em Sao Paulo
Compie sen Apart* men I o no Morumt* «
Parumby tmoveft de ANo Padrao'
•>" *• .ji t o "i w "M ij i wrnb'

LAzer School
Hand) Of Expert LaierTramma. 100% Fin
lm lazcr If jmmg1

Apartamento5 na Ban a
Apartarnentos na Barra * n*r<e«o Cobnmos
Qualquef Ofert*. Confra

Riverside, Jardim Europa, Sao Paulo, Apartamentos
com 3 ou 4 dormitorlos u.u
•—frflT"--" ""••- B-..-

Ota)d» BtiWka^fc: Outubro .

Opt;oes, pretos • condicoes:

(11) 9499-9920 - M«d*iros

Riverside Browrntone Residences Odade Jar dim - s,,t Paulo
Apartamentos - 2 a 4 dorms • 146 a 352 m' / PROHTOS PARA MORAR

s de 4 mil mj de area verde larei e areas liv'es com o objetivo de valorizai amda

Areas crnnunt: Academia de ginastka. Cinema. Hall. Portaria, Sal&o de festas. ehnguedoteca E'spaco gourmet

Piscina adutto coberta Praca. Salao de gogos. Centro comercial. Garage band / danceteria. Piscina adulto des coberta
Sala de leitura, Spa

Figure 107: An apartment feature from OLX. The expected neighborhood is outlined in red.

2: Performance of New Restaurant Dataset
We used the new restaurant dataset to generate neighborhood boundaries and evaluated the performance

against our ground truth boundaries. The data obtained from Zagat resulted in boundaries for 34 neighborhoods,
with an average Fl score of 0.3159. There were far fewer features obtained from OpenTable, and as a result, it
could generate boundaries for only 10 neighborhoods, with an average Fl score of 0.2517.

At first glance, these Fl scores seem fairly low compared to our previous restaurant feature sets. However, upon
closer inspection we find that the drop in Fl score is due, in these cases, to low recall rather than low precision.
The Zagat feature set holds a precision score of 42.05% and the OpenTable feature set holds a precision score of
62.87%. These are, in general, much higher than the precision scores of our previous apartment or restaurant
dataset.

3: Performance of Combined Restaurant Dataset
We combined our newly extracted restaurant features with our existing dataset, in an attempt to improve

performance. Our original restaurant dataset contained a total of 4827 features. With the addition of the new
restaurant dataset, we added a total of 780 new restaurant features, resulting in a total of 5607 features in the
combined restaurant dataset.

Together, the combined restaurant dataset could generate boundaries for 89 neighborhoods, with an average
Fl score of 0.4157. This is an improvement in the number of neighborhoods over the original restaurant dataset,
which could generate boundaries for 83 neighborhoods. The original restaurant dataset had a slightly higher Fl
score of 0.4310.

4: Performance of Final Combined Dataset
Finally, we combined our entire apartment dataset after removing ambiguities, our old restaurant dataset. and

the new restaurant dataset into a single final combined dataset. The new dataset, after applying our clustering
algorithm, generated boundaries for 72 neighborhoods, with an average Fl score of 0.5018. This is an improvement
in the number of neighborhoods over our prior best performing data set. Our old dataset, after clustering, generated
boundaries for 70 neighborhoods. The Fl score of 0.5073 is comparable to the Fl score of the new method.

6.8 Foreign locality

6.8.1 Neighborhood Discovery for Foreign Country

1: Source Discovery and Data Extraction

!).r,

CACHOIRINKA

MANDAQUI
MAITUBA

FMOUtSIA DO 6
EMEIINO

MATARAZZO sAOMICUfL "*'M PAuL'slA

Mill

-.WOW TAVAJtS

8ARRA fONDA
VILA MARIA PONKRASA

PEMIA

VILA JACUI WW CMURRJCA

LAJ(ALX)

IMUCM

HLlAIAhAitS

_.., SANTA HCILIA ML(M I4Wltf(viLAMATuDi
HAS AWURAIVIN

criNSOlACAO il CARRAO

^^.—^ KIAVBTA CUKUC' AGUAUSA CBAIK 1I0W JOS* KMllACIO
niwans ^^ VHAIORMOSA _.„

«TA^ LWFANTA

•AOWM6I

"«SOW JAUHIII

VILA

D ^AUOt

r*MGA SAO LUCAS
VHA PRUWS'F

SACOMA
CURSWO

QOCWUO

SAOMArtlB «"»tMI

SAPOPfMOA

SAOUrATL

Copyright l www.intcrhabtt.com

Figure 108: A map of neighborhoods in Sao Paulo provided by interhabit.com.

In order to further test our neighborhood extraction methods, we chose to attempt to derive neighborhood
areas in an unknown, foreign locality. We were already examining apartment features from the Sao Paulo, Brazil,
area for another project. We then decided to use Sao Paulo as our target foreign geography.

We discovered three primary sources of real estate listings in the Sao Paulo area http://cidadesaopaulo.
olx.com.br/ (OLX), http://www.aluguetemporada. com.br/ (Alugue Temporada) and http://www.penseimoveis.
com.br/ (Pense Imoveis).

These apartment sources, similar to the restaurant features discovered in Chicago, IL, contain an explicit
"neighborhood" field. This means that we are not required to use any sort of string-parsing techniques and can
instead define expected neighborhoods explicitly.

However, the information density of Sao Paulo, Brazil, is much lower than in Chicago, IL. Of our three primary
sources, we only found apartment features specific to the Sao Paulo area from our OLX source. Alugue Temporada
provided results for the state of Sao Paulo but did not contain any results for Sao Paulo city; Pense Imoveis did
not seem to contain many listings with neighborhood information. As an illustration, Figure 107 gives an example
of an apartment feature from OLX.

In all, from OLX we were able to extract 1246 records with the neighborhood field available.

2: GeoCoding of Addresses
The extracted apartment features did not provide an explicit latitude/longitude coordinate for mapping. We

used Google Maps service for geo-coding, and, using this method, we were able to define geo-coordinates for all
541 apartment features.

To remove duplicate points, we grouped our apartment features based on their latitude, longitude and reported
neighborhood. Of the 541 original apartment features, we found 370 distinct features.

3: Boundary Generation
We chose to test our general cluster analysis on the apartment features extracted from Sao Paulo. We used the

same analysis as in our previous experiments. That is, we chained the "Median Cluster" and "Negative Cluster"
algorithms together with their optimum input parameters as discovered from the Chicago, IL locality.

96

CACHOERINMA

MANDAQUI

JACAMA
ami TACORUVI

GUES1A DO 6

II MAO

BARRA FONDA

CASA VEROE m
" VlLAGUUHLRMf

SANTANA
WE

V^AMAR

MEDEIROS

BOM RETIROP*"1

SANTA CECILIA otUM TAT,1APc
PERDI2ES BRAS UA*

CONSOLACAO SV 4M^
IHFIROS

I W^ CAMBUCI ,„„,„,..
PlNHEMOS B£WV,STA AGUARASA

JARDIM PAULISTA UBERCW3 M0<

ERMEIM
MA1ARA.

CANGAlBA

PONTERASA

PENHA

VILA MATILDE
ARTUR ALV

CARRAO

ITA

UMBI

I'AIM BIB

CIDADE LID
VILA FORMOSA

ARICANDUVA

IPIRANGA SAO LUCAS
VILA PRUDENTE

SAUDE
SACOMA

SAO

SAPOFtMBA

CAMPO BELO
CURSl\0

Figure 109: A map overlay of the extracted "Vila Maria" neighborhood after cluster analysis. Our predicted
convex hull boundary is seen in red.

After applying clustering, the remaining feature points could generate boundaries for six neighborhoods in Sao
Paulo city: "Brooklin," "Ipiranga," "Morumbi," "Saiide," "Tatuape" and "Vila Maria."

6.8.2 Ground Truth Discovery

Using our "downward" Wikipedia extraction from the root category, "Districts in Sao Paulo" (http://en.
wikipedia.org/wiki/Category:Districts_of _S'/,C3'/,A3o_Paulo, we located 59 distinct neighborhood names.

We were unable to find a ground truth that would provide the boundaries for each neighborhood, and so were
unable to evaluate the performance using our evaluation metrics of precision, recall and Fl scores.

We did, however, find a current map of expected neighborhood boundaries, as shown in Figure 108. We can
use the map for visual inspection of the neighborhood boundaries generated by our algorithm.

1: Normalization of Neighborhood Names
We found that the neighborhood names in our dataset were not standardized. From OLX we were able to

extract 1246 records. Since our apartment features contained an explicit "neighborhood" field, we were not required
to use a tokenizer or string parser to define each neighborhood. However, the neighborhood field of OLX does
not seem to be standardized. When grouped by neighborhood name, we find that the 1246 provide 521 distinct
neighborhood names; as a reference, our ground truth discovery using Wikipedia indicates there are a total of 59
neighborhoods in Sao Paulo.

We believe that this is because the "neighborhood" field of OLX is entered by hand. Small differences in
neighborhood name conventions mean that we must provide some normalization in order to extract a reasonable
number of neighborhoods for analysis.

We developed a very simple string-parsing method in order to match as many names to our ground truth a.s
possible. For each known neighborhood name, we examined each extracted neighborhood to see if the known name
existed anywhere within the extracted name. In this way, we were able to match 541 apartment features to known
neighborhoods.

97

6.8.3 Performance Evaluation

Since we were unable to obtain ground truth boundaries for neighborhoods in Sao Paulo, we instead used visual
inspection to evaluate the accuracy. Figure 109 shows the overlay for the "Vila Maria'" neighborhood. From the
visual inspection, the accuracy appears to be good; based on visual inspection, we estimate the precision to be
70% and recall to be 60% for this neighborhood.

7 Wikipedia Traversal

In this task, we began an investigation that generated gazetteer entries using content available on Wikipedia.
We observed that many pages on Wikipedia include geo-coordinates, specifically the articles about geospatial
features, e.g., mountains, lakes, cities, hospitals, buildings and other structures, etc. Having a geospatial database
constructed from Wikipedia, and composed of the rich human-edited content together combined with associated
coordinates, would be an immensely useful resource for driving many mining tasks. The coordinates on the
Wikipedia page are available in a consistent format, as shown in Figure 110. While the actual position in which
the coordinates are placed may differ across pages, the formatting properties are always consistent.

Additionally, we explored an structured alternative to Wikipedia, DBPedia, as well as traversal techniques for
acting on Wikipedia articles, feature gazetteer generation and article autocorrection.

7.1 Coordinate discovery

7.1.1 Motivation

Transitioning from our study of discovery of the hospital features, we started this task with a similar focus-of
constructing a database of hospitals and their coordinates using Wikipedia. We built agents with which to extract
the coordinates from all the articles on Wikipedia about hospitals in the United States. Our agents started from
the page on Wikipedia that provides a "List of hospitals in the United States" (http://en.Wikipedia.org/wiki/
List_of_hospitals_in_the_United_States). From this root page, our agents visited pages corresponding to
each state, and collected the URLs of individual hospital pages. Finally, upon visiting these individual hospital
pages, our agents extracted key attributes, including the name of the hospital, and its coordinates (whenever
available).

In our opening section, we describe the overall motivation for our exploration of generating geospatial gazetteers
from novel forms of geo-tagged media content. The knowledge-rich media content, when geo-tagged, can become
a powerful resource for mining. The text in Wikipedia articles is an example of such rich content. Recently,
there has been an increasing buzz around the real time messaging service Twitter for its planned release of a
geo-tagging function [38]. This service is already receiving much attention for its capability of enabling real-time
communication on the Web. The service is now considered akin to citizen journalism [36, 37]: for example, the
news about the plane crash in the Hudson River [24] was reported on Twitter before the national news agencies
picked up the story. Similarly, live updates of a house on fire [12], or the attacks in Mumbai [28] first appeared
via Twitter. Now, imagine: what if all these messages were geo-tagged? They could become a great resource for
the mining of intelligence information.

We observed that many pages on Wikipedia include geo-coordinates, specifically, articles about geospatial
features, e.g., mountains, lakes, cities, hospitals, buildings and structures, etc. Constructing a geospatial database
based on rich human-edited content of Wikipedia articles, together with these geo-coordinates, could provide an
immensely useful resource for driving many mining tasks. One function in Google Maps illustrates one of these
numerous possibilities. As shown in the screenshot in Figure 111, the service displays the Wikipedia articles as a
layover on the map. Users can navigate the map to browse to their favorite location and read the articles related
to a geography pertaining to their interest.

7.1.2 Extraction of Coordinates from Wikipedia

1: Basic Extraction
We built agents to extract coordinates from Wikipedia articles about hospitals, as illustrated in Figure 110.

The agents collected a total of 983 hospital features. The agents began from the page on Wikipedia providing a
"List of hospitals in the United States" (http://en.wikipedia.org/wiki/List_of_hospitals_in_the_United_
States). Note that while we used the hospitals in the United States as the corpus for our study, our goal was to

98

WlKIPEDlA
/ / - * Free Encyclopedia

navigation

Main page

Contents

Featured content

Current events

Random article

search

discussion edit this page history

Try Beta £ Log in / create account >

Wikipedia :J Forever Our shared knowledge. Our shared treasure. Help us protect It [SN»I

Rush University Medical Center
From WiKipedia, the free encyclopedia

Rush University Medical Center in Chicago is an

academic medical center that encompasses a 613-bed

hospital serving adults and children, the 61-bed Johnston

R Bowman Health Center and Rush University Rush

University Medical Center is home to one of the first

medical colleges in the Midwest and one of the nation's

top-ranked nursing colleges, as well as graduate

programs in allied health health systems management

and biomedical research The Rush University Medical

Coordinates (£) 4r5279'N 87'4009'Vf

Rush University Medical Center

Geography

Location Chicago. United States

Organization

Hospital type Teaching/University

Affiliated Rush University

university

Figure 110: Illustration of Wikipedia articles that include geocoordinates.

< • >i S» sa^n ^ a a aa Ma

Figure 111: Layover of Wikipedia articles on Google Maps.

design techniques that could automatically discover coordinates for all geographical features in Wikipedia, e.g.,
buildings, airports, amusement parks, bridges, canals, dams, cinemas, etc. (http://en.wikipedia.org/wiki/
Category:Buildings_and_structures_in_the_United_States_by_state).

2: Discovery of Coordinates: UsingName Method
In our first method for automatic discovery of coordinates, we used solely the hospital name to compute the

geo-coordinates. Often, third party geocoding services can return correct coordinates based only on the name of
a hospital. We sent the #hospital-name as our input query to the Google Maps geocoding service. The resulting
coordinates were used as the output of the UsingName method.

To understand the correctness of the UsingName method, we compared its output coordinates to the coor-
dinates obtained from the Wikipedia articles. In Figure 112, we show the distribution of the distance between

99

I
I g

i/i rN OT 10 m o 9 o o H it n

Ranked list of Records (sorted on distance)

Figure 112: Distribution of the haversine distance between the coordinates from Wikipedia and the UsingName
method.

the coordinates obtained from the UsingName method and from Wikipedia, for the 382 hospitals for which the
Wikipedia articles had coordinates. We observed that for some cases the distance is too far-even greater than the
distance between Chicago to New Delhi, India, i.e., 12,000 kilometers.

To improve the precision of the UsingName method, we added a module to analyze the coordinates returned
by the geocoding service and to filter out the "error" cases, for which the results of this method cannot be correct.
We attempted to filter out the following error cases:

1. Error: Cannot Geocode - For some cases, when the third party geocoding service (i.e., Google Maps) failed
to geocode the input query string of #hospital-name, the service returned the default coordinates of 0,0. For
these cases, we modified our UsingName method to return a 'null' result (i.e., cannot geocode).

2. Error: Outside US - Since our target geography in this study was the United States, for the cases in which the
geocodes obtained from the geocoding services were outside the United States, we modified our UsingName
method to again return 'null' results.

3. Error: City Level - Generally, the geocoding services attempt to return the best possible match for the input
query, and as a result, sometimes their results are at the granularity level of the city. These were, again, not
precise enough for our purpose, as we were looking for a precise coordinate of the feature (e.g., hospital).
We modified our UsingName method to detect such cases by adding a function that analyzes the "place"
structure (i.e., the normalized address string) returned by the geocoding services and determines if the most
specific field in the normalized address is a city.

After filtering out the erroneous cases, as detected by the above modifications, we found that the UsingName
method returned coordinates for 765 cases. We considered these cases "seemingly okay," i.e., we believed these

100

I UsingName • UsingNameCity

900

800

700

600

500

400

300

200

100

0

765

331

137 162

15

error: No Context error: cant geocode error: city level error: outside US okay

Figure 113: Breakdown of the results of the UsingName and UsingCity methods into different
"seemingly okay" cases.

error" cases and

coordinates should be correct. As summarized in Figure 113, the results of the UsingName method fall under
"Error: Cannot Geocode" category for 137 cases, "Error: Outside US" for 15 cases, and under "Error: City Level"
for 65 cases. Thus, the UsingName method successfully returned results for 765 out of the 983 total hospitals on
Wikipedia, i.e., the recall of the UsingName method was 77.8%.

The distribution of the haversine distances between the coordinates from Wikipedia and the coordinates from
the UsingName method appeared less skewed after filtering out the "error" cases. Of the 765 cases in which the
UsingName method returns coordinates, Wikipedia coordinates were available in 288 cases. The distribution of
the haversine distances for these 288 cases is shown in Figure 114. In comparison with the distribution before
filtering (i.e., Figure 112), far fewer cases showed high distances after filtering; most cases were closer to 0.

We also evaluated the precision of the UsingName method. We sampled hospital features from 288 cases in
which both the UsingName method and the Wikipedia coordinates were available. We partitioned these hospital
features into different groups based on the distance between the two coordinates, as shown in Figure 115. For
each partition we sampled up to 10 hospital features. For the sampled hospital feature we manually inspected to
determine whether the hospital is indeed located at the returned coordinate. We observed that the precision for
the cases in which the distance is 0 kilometers or less than 0.5 kilometers was 100%. The precision dropped to 66%
for distances between 0.5 — 1 kilometers, and then to 57% for distances in the 1 — 10 kilometer range. Precision
dropped to 0 for distances of more than 10 kilometers. Overall we estimated that the coordinates returned by the
UsingName are correct in 93.4% of all cases.

Thus, the precision and recall of the UsingName method are 93.4% and 77.8%, respectively.

3: Discovery of Coordinates: UsingCity Method
Next, we designed a second method that could outperform the UsingName method. We added some context to

the name of a given hospital before geocoding. In particular, in our second method we used the additional context
of providing the name of a city and state in the hospital feature. Thus, we called our second method the UsingCity
method. This additional context helped the geocoding service to better compute the correct coordinates for the
input query.

As the first challenge, we had to extract the city name from the content of a Wikipedia article. Consistent
with the motivation of this study-that Wikipedia articles provide rich knowledge about the respective hospital
feature-we observed that the articles generally included the name of the city in which the hospital was located,
often in the first paragraph of the article. Furthermore, the mention of a city name is hyper-linked to the Wikipedia

101

IP i/» «o * o\ m o >-i <-t
a\ in -H

IT Ifl » i

Ranked list of Records (sorted on distance)

Figure 114: Distribution of the haversine distance between the coordinates from Wikipedia and the UsingName
method, after filtering out the error cases.

Distance Records Sampled Correct Estimated Correct Precision
0 69 10 10 69 loo';;
0-0.5 101 10 10 194 100%
0.5- 1 3 2 2 2 66.67%
1 - 10 7 7 4 4 57.14%
10 - 100 4 4 0 0 0%
100 - 500 1 1 0 0 0%
500 - 1000 2 2 0 0 0%
> 1000 8 8 0 0 0%
Total 288 269 93.4%

Figure 115: Evaluation of the precision of UsingName method.

article about that city. The anchor text of these hyper-links (i.e., the text used in an hyper-link to another web
page) were consistently of the format "#city, #state."

Based on our observations, to extract a city name, we first extracted all the anchor text from the first paragraph
of a Wikipedia article. We, then, matched each of the candidate anchor texts with a "#city, #state" pattern to
determine which of them end with the name of any of the state of the United States. We used the first matching
anchor text, if any, as the city context for that hospital.

Next, after extracting the city context, we used the string "#hospital-name #city-context" as the input emery for
the geocoding service of Google Maps. We used the returned coordinate from the geocoding service as the result
of the UsingCity method.

Using our technique for extracting the city name, we were able to find the context in 652 out of 983 hospital

102

Distance Records Sampled Correct Est. Precision
0 15 9 9 100%
0-0.5 172 10 10 100%
0.5-1 7 7 7 100%
> 1 8 8 1 50%
Total 202 98%

Figure 116: Evaluation of the precision of the coordinates obtained from the UsingCity method.

articles listed on Wikipedia. For the pages in which our method returned the city context, we observed that
the results were always correct. For the remainder pages in which our method could not find the city context,
i.e., 331 out of 983 pages, we observed that the reason for this result was due to the missing state name in the
anchor text. Our city context extraction searched for the state name in the anchor text; however, the articles
about hospitals in large cities, e.g., Chicago, seemed to only mention the city name, without the suffix of the
state name. For example, the article about "John H. Stroger Hospital" used the anchor text of "Chicago" (http:
//en.Wikipedia.org/wiki/John_H._Stroger,_Jr._Hospital_of_Cook_County). These cases can be improved
by making our city context extraction flexible, by relaxing the requirement that state name must appear in the
anchor text. We can add another dictionary of all cities or "popular" cities, and look for matches against the city
name dictionary.

We analyzed the accuracy of the results of the UsingCity method by employing a framework similar to the one
we used for the UsingName method. As shown in Figure 113, there were 331 cases for which the city context
could not be found. We observed that adding the city context helped improve geocoding accuracy: the number of
cases of "Error: Can't Geocode" fell to only 3 with the UsingCity method, in comparison to 137 for the UsingName
method. Also, there were zero cases for which the geocoded addresses fell outside the United States with the
UsingCity method; in contrast, with the UsingName method, there were 15 such cases. We found that the number
of cases for which the geocoded address was at the granularity of the city level, i.e., the category of "Error: City
Level," was higher for the UsingCity method-162 cases, compared to only 65 for the UsingName method. Since
the UsingCity method used the city context, the geocoding service was likely to return a city level address in those
cases for which it could not find the geo-coordinates for a specific hospital name.

Thus, the UsingCity method could successfully geocode 486 out of 983 hospital records, i.e., a recall of 49.4%.
The recall of the UsingCity method is significantly lower than the success of the UsingName method, which was
77.8%.

Next we evaluated the precision of the UsingCity method. For our evaluation we used a similar approach
employed in the evaluation of the UsingName method, namely, by sampling records based on the distances between
the coordinates of the UsingCity method and those coordinates obtained directly from Wikipedia. Recall that we
already did such sampling when evaluating the precision of Wikipedia coordinates (Figure 121). We used the same
sample set of records for evaluating the precision of the UsingCity method as well, as summarized in Figure 116.
There were 15 records for which the distance between the two coordinates was zero, i.e., the coordinates were
exactly the same. Of these we sampled 9 records, and in all cases we found that the coordinates of the UsingCity
method were correct. For the next partition, in which the distance between two coordinates was between 0 — 0.5
kilometers, there were 172 records; we sampled 10 records and found the precision of the UsingCity method to be
100%. Moving to the next partition of distance, between 0.5 — 1 kilometers, we again found the precision of the
UsingCity method to be 100%. For the last partition of distance > 1 kilometers, the precision of the UsingCity
method dropped to 50%. Overall, the precision of the UsingCity method was estimated to be 98%.

7.1.3 Evaluation of Coordinates Extracted from Wikipedia

We first studied the accuracy of coordinates available in Wikipedia articles by analyzing the results produced by
our agents.

We observed that on one hand the hospital articles found on Wikipedia were often missing the geo-coordinates.
Only 335 out of 983, i.e., 34% of the hospital articles on Wikipedia, included geo-coordinates.

On the other hand, when we inspected the correctness of the coordinates (when available), we observed several
cases for which the coordinates in Wikipedia were inaccurate. The following examples illustrate different reasons
for the incorrectness of coordinates in Wikipedia.

103

Unwefstty'Dowmown
Raich.* SI I (J5?)

iHD 55(55 ii>
CUD * ^

[""Traffic '1 More

W Murray |

NPo^

5 A' N*' <•+
Sovefttgn SI < Sovtr.jtgn St j J? «5" C^Q*

W.tlJ I / ft

Sun«A,. | ^Rr

5
I

Cr«si cre.t Street

I© 1

• >

, EnglawoodAv*

w,

s s
< * I
._, W Knox St I
• W Kno» SI "^ ft

I « • 2 f •
OidWe»t "I | I | I a
Ourtiarri GfMri St Grew st - 5 $ tS o 3

ft S t 4 * | »••» St

I *!° .Tnni* I51 &

(Wsi OldWe.i
Ourtiam

HM»borouc*»«H

D«rTwriu» st

Tnnity

Grt.

Figure 117: Incorrect Wikipedia coordinate: Coordinate of the parent institution.

1. Coordinate may be of a parent institution. Some hospitals are affiliated with universities. When entering
coordinates in a Wikipedia article, the editors may judge the correct reference coordinate differently-that
is, the coordinate of a hospital, or that of a parent institution. For example, as shown in Figure 117, the
coordinate for "Watts-Hillandale Hospital" in Wikipedia (marker A) represents the location of the parent
institution, and therefore, is far away from the correct coordinate (marker B).

2. Coordinate may be of a city. Similar to the above situation, instead of entering the exact coordinate of a
hospital, the editors of the article may sometimes simply enter the coordinate of a city. For example, as
shown in Figure 118, the coordinate in the Wikipedia article (marker A) for "Carillion Roanoke Memorial
Hospital" is at the center of the city, which is far away from the correct coordinate of the hospital (marker
B).

3. Coordinate may be of a street with a similar name. Sometimes there may be a street near a hospital, so that
their names may be similar. In such situations, the editors of the article may make the mistake of entering
the coordinates of the street. Consider "Bryce Hospital" for example, as shown in Figure 119, for which the
coordinate obtained from Wikipedia (marker A) is wrong; the correct coordinate is shown by marker B.

4. Coordinate may be approximate Sometimes the mistake may be unintended. The editors may not be careful
about entering the precise coordinate. For example, as shown in Figure 120, for "St. Mary's Hospital," the
coordinate obtained from Wikipedia (marker A) is about 5 blocks away from the correct coordinate (marker
B).

To rigorously quantify the precision of coordinates extracted from Wikipedia, we sampled some records, and
manually judged the correctness of their coordinates. For this sampling, rather than using random sampling, we
wanted to first classify the hospital records into different partitions, based on the likelihood of the correctness
of these coordinates, and then sample randomly within each of these partitions. Therefore, as our criteria for
partitioning, we used the distance between the coordinates obtained from Wikipedia and the coordinate generated

104

Figure 118: Incorrect Wikipedia coordinate: Coordinate of a city.

by the UsingCity method (introduced later in Section 7.1.2), since the UsingCity method produces coordinates that
are the more accurate of the two automatic coordinate generation methods we developed. With this partitioning
scheme we expected that the greater the distance between the two coordinates, the more likely that the coordinate
from Wikipedia was wrong.

There were 202 cases in which coordinates could be obtained from both methods, i.e., from the Wikipedia
article as well as from the UsingCitymethod. Figure 121 shows the distribution of haversine distance between
the two coordinates for each of these 202 cases. There were 15 records in which the distance between the two
coordinates is zero, i.e., the coordinates were exactly the same. Of these cases, we sampled 9 records, and in all
cases found that the coordinates obtained from Wikipedia were correct. For the next partition, there were 172
records for which the distance between two coordinates was between 0 — 0.5 kilometers; we sampled 10 of these
records and found the precision of Wikipedia to be 90%. Moving to the next partition of distance between 0.5 — 1
kilometers, we found that the precision of Wikipedia drops to 42%. In the last partition of distance-greater than
1 kilometer-the precision of Wikipedia drops to 37.5%. Thus, overall, the precision of the coordinates extracted
from Wikipedia was 87%.

7.1.4 Need for Improving the Quality of the Coordinates in Wikipedia

The incompleteness (recall = 34%) and the inaccuracy (precision = 87%) of the coordinates in Wikipedia articles
is to be expected. These coordinates are inserted by editors. The editors must manually determine the correct
geo-coordinates for the geographic features. Lacking any automated tools to assist them, either the editors do not
enter the coordinates (resulting in incompleteness), or the coordinates that they enter are likely to be erroneous

105

I.otogy dg

H6iT Theta Tau

Alpha
PfiAfcha

IWg I n. U
j wl 4293-1

Gotoon
Palmet Hal f1—

Bryant Mai

I.
Alpha lau

Omega

PI Kappa

«PJ«3

405 Bryce Lawn
/^ D Apartment
fComple.

. .Bryce Activity
^9 U Room Recreation Fields

•COP offce ana Restrooms

1
f*s, •« » "•

Uniwennty
:.' ••l.iV.r' ,i
jjr ^_ . Kappa Alpha

fi _60i B*yc* Lawn
-Lambda 8 LJ Apartment

-Chi Alpha C—i Comptw

Recreational
Tennis Courts

Bryant
aj Conference
^ Centei , 5

* Ninth" Street £
Apartments

9th St

Four Ponts
by Sheraton

ll wv Rn,ant n.

J<3

CD

Brvee l BrV<:e

,,^T..£—Ho.pit.1 Hospital

PaulW Bryant
Museum 9th Sf

'—5fi-lr- B/yant .
Conference <

L—.Certi, B

i Child Development
^Research Center

700 Urnvenytv
CBtvdf"

Band
Practice Field DCH Rerjtonai

MeAcal Center

"""^My Bva

Figure 119: Incorrect Wikipedia coordinate: Coordinate of a street whose name is similar to the name of a hospital.

(resulting in poor accuracy).
However, the limited availability and poor accuracy with regard to coordinates will impact the utility of

the resulting gazetteer. Therefore, we explored how to enrich the Wikipedia-driven gazetteer by automatically
discovering the correct coordinates for the features found in the Wikipedia articles.

7.1.5 Performance Summary

We summarized the evaluation results of the three methods on the metrics of precision and recall in Figure 122.
Both methods that we developed-UsingName and UsingCity- performed better than by obtaining the coordinates
directly from Wikipedia. The coordinates obtained directly from Wikipedia articles showed a poor recall result of
34%, and a precision rate of 87%. Our UsingCity method performed better than the coordinates obtained directly
from Wikipedia on both recall and precision, respectively, at 49% and 98%. Our UsingName method had a higher
recall rate of 78%; however, its precision mark of 93% is lower than UsingCity method.

7.2 DBPedia exploration

We identified that a useful application of our technology would be to build a gazetteer comprising of the geograph-
ical features present in Wikipedia.

1. The desired target schema would be: (name, FC, lat, lng), with the option of adding other attributes.

2. The target features to capture would include populated places (ADM1, ADM2, towns and villages), landforms
(e.g., mountains, lakes, etc.), and buildings and structures (e.g., museums, hospitals, dams, etc.)

106

Figure 120: Incorrect Wikipedia coordinate: Coordinate is near-by.

Distance Records Sampled Collect Est. Precision
0 15 9 !) 100%
0 - 0.5 172 10 !) 90%
0.5-1 7 7 3 42.85%
> 1 8 8 3 37.5%
Total 202 87%

Figure 121: Evaluation of precision of coordinates obtained from Wikipedia.

As the first step of our investigation, we surveyed an existing effort in this area- DBPedia.org. In this section we
report our findings from our survey of DBPedia, and how we could provide additional information by overcoming
the technical limitation of the DBPedia dataset.

7.2.1 Introduction of DBPedia Dataset

The DBPedia dataset (http: //wiki . dbpedia. org/Datasets) aims to capture structured information from Wikipedia
pages, extracted mostly from the Infobox templates, as illustrated in Figure 123. The dataset is publicly avail-
able and comprises of 3.4 million objects. Of these 312,000 represent persons and 413,000 represent geographical
features (including 310,000 populated places).

107

98

87

93

80 78

60

49

34

20

Recall Precision

• From wikipedia • UsingName • UsingCity

Figure 122: Performance summary: Precision and recall of the coordinates obtained from Wikipedia, the Using-
Name method and the UsingCity method.

7.2.2 Extraction Technology of DBPedia

Wikipedia has defined various Infobox templates for different categories of objects. When creating an article, the
editor needs to decide which category the page belongs to, and based on that choice, pick the matching infobox
template in order to insert structured information relative to the topic. For example, http://en.wikipedia.
org/wiki/Category :Geography_inf obox_templates provides the list of infobox templates which can be used for
geographical features.

The details of the technology behind DBPedia can be found in several of their publications and presentation
talks. A few notable references:

1. http://www.cis.upenn.edu/~zives/research/dbpedia.pdf

2. http://www.google.com/search?q=Extracting+semantic+relationships+between+wikipedia+categories

3. http://www.google.com/search?q=What+have+innsbruck+and+leipzig+in+common

4. http://lists.w3.org/Archives/Public/www-archive/2007May/att-0056/WWW2007-DBpedia-Talk.pdf

Essentially, DBPedia operates in a page-by-page mode extracting data from every Wikipedia article that con-
tains an infobox template. It reads the infobox template, and inserts the feature into a structured database with
all the attributes specified in the infobox template. It maps each feature into its ontology map based on the
categorization of the infobox.

108

Innsbruck

{{Infobox Town AT I
name - Innsbruck I
image.coa - InnsbruckWappen png I
image_»af> - Karte-tirol-I pug I
state - ((Tyrol]) I
regbzk - ((Statutory city)) I
population - 117,342 I
population.as.of - 2006 I
pop.den3 - 1, 119 I
area - 104.91 I
elevation - 674 I
lat.deg - 47 I
lat Bin - 16 I
lat.hem - N I
lon.deg - 11 I
lon.nin - 23 I
lon.bem - E I
postal.code - 6010-6080 I
area.code - 0612 I
licence - I I
mayor - Hilde Zach I
website - (nttp//iunsbruc): at) I

Country Austria

SIM Tyrol

Administrate region Statutory city

Population 117.342 (2006)

AIM 104 91 -i.i-

Population density 1,119/km'

Elevation 574 m

Coordinates ' •':3 i *

Postal cod* 6010-6060

Area code 05i:

Licence plate code i

Mayor Hild# Zath

Web s-ie • • . . ittf

Figure 123: An illustration of an Infobox template used in Wikipedia, from which DBPedia extracts structured
information.

7.2.3 Coverage and Quality of DBPedia Dataset

Since the infobox templates already provide information in a structured format, the quality of data in DBPedia
can be assumed to be reliable and complete. The users may browse the DBPedia dataset using the search interface
at http://dbpedia.neofonie.de/browse. The following links showcase information about some of the features from
DBPedia dataset:

1. http://dbpedia.org/page/Mount_Sinai

2. http://dbpedia.org/page/Zabul_Province

3. http: //dbpedia. org/page/Sela_pri_Zaj'/,C4'/.8D j emVrhu

1. http://dbpedia.org/page/London_Heathrow_Airport

It appears that the DBPedia dataset may already capture all of our desired attributes for features in which
page-by-page operation may be sufficient. Of the four basic attributes in our target schema, three attributes can
be found directly from the page for all features, i.e., name, latitude and longitude. The fourth attribute, "FC,"
can be derived when the template used for the infobox can be used to infer the "FC" attribute at the granularity
we desire, e.g., the Wikipedia article for Heathrow Airport uses the infobox template for airports. It seems that
this page-by-page extraction approach can derive FC attribute for landforms, and buildings and structures.

7.2.4 Limitation of DBPedia

However, it appears that DBPedia's page-by-page extraction approach cannot determine the correct FC for ADMs.
Wikipedia editors use the same infobox template for all the articles about "populated places," and therefore, it is
not possible to differentiate the ADM level based on the template used in the infobox.

7.2.5 Overcoming the limitation of DBPedia

We believe that FC attributes for ADM features, which cannot be determined using DBPedia's page-by-page
extraction approach, can instead be determined based on the "List" functionality of Wikipedia (more informa-
tion can be found at http://en.wikipedia.Org/wiki/Wikipedia:Lists). Wikipedia includes lists for all ad-
ministrative subdivisions across all countries at http://en.wikipedia.Org/wiki/Category:Administrative_
divisions. We can navigate through these links using our agent crawling technology. During the navigation

109

process, we can link the features found in the articles at the leaf level, to the parent nodes in the navigation path,
and thus, we can correctly infer the FC attribute for ADM features. In particular, we may begin navigation from
http://en.wikipedia.Org/wiki/Category:Administrative_divisions, and continue down to different levels
of ADM subdivisions in order to determine the FC feature of a particular geographical features present in the leaf
level of the page.

7.3 Alternatives to page-by-page extraction

We believe that the FC attributes, which cannot be determined using the page-by-page extraction approach,
can instead be determined for ADM features based on the "List" functionality of Wikipedia (read more at:
http://en.wikipedia.Org/wiki/Wikipedia:Lists). Wikipedia includes lists for all the administrative sub-
divisions across all countries at http://en.wikipedia.0rg/wiki/Category:Administrative_divisions. We
can navigate through the links using our agent crawling technology. During the navigation process, we can
link the features found in the articles at the leaf level to the parent nodes in the navigation path, and thus,
we can correctly infer the FC attribute for ADM features. In particular, we began navigation from http:
//en.wikipedia.org/wiki/Category:Administrative_divisions, and continued down through the first and
second level ADM subdivisions. In doing so we were able to determine the collection of administrative areas
associated with each given country in each administrative district level.

Given a particular page, we found it is also possible to traverse back upward through the parent-leaf relationship
of Wikipedia categories in an attempt to reach a particular broad parent category. We found several uses for upward
traversal; given any starting page, it is possible to check if a page is a member of a particular parent category by
following each leaf-parent connection until either the category has been reached or a pre-set limit for the height
of the leaf-parent tree is passed. If the category is reached, the page exists in the target category; if the pre-set
limiting height is always reached, the page does not exist in the target category. During this traversal it is also
possible to collect each category traversed as a parent and attach these as attributes to the given starting page. We
tested these methods on the collection of ADM areas we found in our parent-leaf, downward traversal of Wikipedia
categories.

Many Wikipedia pages contain templates, a pre-defined structure for displaying certain types of information.
In particular, many of the specific Wikipedia pages for ADM areas contain a template containing their geo-
coordinates. We used this structure to attempt to extract latitude and longitude for all pages collected in our
downward traversal of Wikipedia categories.

Since all Wikipedia categories are originally organized by hand (that is, each page must manually be set as
existing in a particular category) and could contain errors, we decided that it would be prudent to develop some
method of quality analysis to determine the validity of each collection of ADM areas for each country. We also
chose to compare our results to the collection of ADM areas gathered by the database of Global Administrative-
Areas (GADM) (http://www.gadm.org/).

Finally, we identified one particular area for which information gathered by DBPedia is very scarce. Since
DDPedia crawls Wikipedia pages for its information, all information in DBPedia must first exist in Wikipedia.
That is, if a particular ADM area does not have a page in Wikipedia, it will not exist in DBPedia. Even so, lists
of these areas may exist in Wikipedia categories or in pages within these categories, and are specially marked so
that the user knows that a Wikipedia page does not yet exist for a particular link. Using this information, it is
possible to extract additional ADM areas.

7.3.1 Downward traversal of Wikipedia

The root of our downward traversal of Wikipedia began at the broad level: http://en.wikipedia.org/wiki/
Category:Administrative_divisions.

Categories in Wikipedia can contain sub-categories, pages, or a mix of both. Sub-categories are categories
themselves and only differ from a root category by their parent-child association. Pages are direct links to
Wikipedia pages. We were able to use the titles of both sub-categories and pages to extract the names of ADM
areas within a given country. Our general algorithm is as follows:

1. For a given root category:

(a) Collect a list of interesting sub-categories.

(b) Collect a list of interesting pages.

110

WlKIPEDlA

Cmmgars Reao EM v«*fmiai>

Category:Rrst-level administrative country subdivisions

• (topJawf) «m.^T,j

V fWM IW <«*gory \ iutxMtgmfi •

:n sutwvmion ni m* coirtry ml

c »conwnj 10corny nut u Wactiy •"

[-1 F»w trv* rtrmrouaivF cou
[*i CaMQtm By ni<«vo *»'
|*] PmwiiB t* Atghaj«nar>
-I • *»•).*• j

|»J PfDVBW«i gt Aim-....
|»| Partitiaj i* Anakwii
|*J Ptownc** o* Angola
|«| Pamnn (* Amigiui KU|

|*| Stma* arc temtana^ tf A

DMA It Dl Bfltot

OiU-iij ul Bhutan

Effllun <* Bain* idd He-;*gtni"ii
["•.Mil' til eiH<.A.tfia

[•I Provinca* of Buctin.

Figure 124: The First-level Division Wikipedia category, containing countries as sub-categories.

2. Select a new root category out of the list of collected sub-categories and repeat step 1.

3. End when no more un-traversed, interesting sub-categories exist.

• Categories that have no interesting sub-categories are marked as leaf categories, since they act as the
bottom of the traversal tree.

4. Aggregate lists of interesting pages and leaf categories.

For ease of analysis, we split our inspection of ADM areas into two groups, each a member of our root category:

• http://en.wikipedia.Org/wiki/Category:First-level_administrative_country_subdivisions

• http://en.wikipedia.org/wiki/Category:Second-level_administrative_country_subdivisions

Both contain a similar structure, but are different enough in their internal organization that they require
slightly different methods of crawling the downward parent-leaf relationship in order to extract the most-complete
set of information.

1: ADM Level 1
The direct children of the First-level Divisions category are sub-categories that represent the first-level ADM

divisions of each country. As seen in Figure 124, each of these country-level division categories contain a mix of
pages and sub-categories for the specific areas associated with the given country.

We found that, in general, for any given country-level category, the category contains a set of sub-categories
and pages that make up the total administrative areas for the region. Using this general fact, we chose to collect
a unique set of items from both the sub-categories and pages.

One problem found in gathering sub-categories and pages is that a country-level division might have some non-
interesting administrative pages and categories associated with it, in addition to the entries for each ADM area, e.g.,
a Wikipedia page, "http://en.wikipedia.org/wiki/Provinces_of_Afghanistan" inside Afghanistan's first-
level ADM division that details information about all of Afghanistan's ADM level 1 areas. We solved this problem

111

by noting that a category's sub-categories and pages are organized into alphabetical blocks, and the non-interesting
administrative pages are located outside of the alphabetical ordering.

Another problem is that entries included in the alphabetic ordering are not always valid. Specifically, if a page
or sub-category contains the words, "of," "list," "former," or "template," it is not a valid ADM area, but instead
a list of some other information associated with the super-category (that is. the country itself). We solved this
problem by removing any sub-category or page entries that contained these strings.

Our general rules for inclusion of a sub-category or page as a valid ADM area becomes:

• Item must be included in alphabetical sorting.

• Item must not contain the words "of," "list," "former," or "template".

Our algorithm becomes simply:

1. Descend into the First-level Divisions category.

2. Collect the names of all countries listed as sub-categories.

3. Store these names, along with the associated ADM level 1 type (e.g., "Province", "District", etc.).

4. For each discovered country:

(a) Descend into the sub-category associated with the given country.

(b) Collect all sub-categories of the country that fit our rules for inclusion.

(c) Collect all pages of the country that fit our rules for inclusion.

(d) Remove duplicate entries from the collection.

(e) Store all items relationally with their associated country.

Using this method we were able to discover 3850 distinct ADM level 1 areas across 183 distinct countries.

2: ADM Level 2
We found that the general structure of the Second-level Division sub-categories is much the same as the First-

level Division sub-categories. We found that the same rules, both alphabet-sorting and the list of strings, were
valid for the Second-level Division sub-categories as well as the first, with one major exception. In the First-level
Division sub-categories, the unique set of pages and sub-categories (the country's direct children) made a complete
list of that country's ADM level 1 areas. In the Second-level Divisions, this proved to be not true.

Zimbabwe, as seen in Figure 125, has several pages associated with its ADM level 2 areas (Districts), which
we can directly extract. The sub-categories, however, contain entries like "Districts of Matabeleland North."
Descending into this sub-category, we found a mix of pages and sub-categories that included additional ADM level
2 areas associated with Zimbabwe. Since we could not just collect the direct children of a given country to find
the complete set of ADM level 2 areas, we had to develop rules for descending into sub-categories.

In surveying several Second-level Division sub-categories, we found that, in general, it would be useful to
descend into a country's sub-category if the sub-category contains the word "of." As with the Zimbabwe example,
this generally signals that the sub-category will contain a list of additional ADM level 2 areas. One problem we ran
into, however, was that sometimes a country contained a sub-category similar to "People of Afghanistan." Using
our simple string rule, we would mark this sub-category as one to descend into and collect information from, even
though it is clearly not a list of ADM areas. We solved this problem by also making sure that any sub-categories
marked for inclusion also contained the string that represented the country's ADM level 2 type (e.g., "District,"
"County," etc..) Using these rules, we could be reasonably sure that we were only descending into sub-categories
that contained additional lists of a given country's ADM level 2 areas.

Our rules for inclusion remained the same as or the First-level Division categories:

• Item must be included in alphabetic sorting.

• Item must not contain the words "of," "list," "former," or "template."

Our rules for descending into sub categories are as follows:

112

W CM*2*ryO*tnct. of

* a wi wikiprtMi o<g • . • ! o- >

WiKiPtniA

"v" » RHH) EM VWtWM) Q P

Category:Districts of Zimbabwe
n.tn.toty.kf**

rhi•n«t,»l«lto1^«l.«l«t.W;»nMI«W

<•„,*„„ Subcategortes

D^MM !••*» L««JIXV DM itw 'otKMtiig 22 tutK«*goo*i ou at 22 tea

""•"'"•"""-

. [•JWsi.*ih«.MWWn«,P.w.»:»(»C 4 P) G com. M com.

* "Z,Z.^ • (*|M..ih..•**•«] F.IM [»MI«1S(5C J»| . |«1 Gokw S««n OMlncl (1 P| . |-| MWOIM DBI•. (2 P)

• (•] iVimmonti MM (2 P) • {•] MMWVJMI Onlort (1 P)

• 1*1 DRM K .J M*»HW»« Noflf. |JC»P| • |*) GMMOU CtttlK I (1 C » PI • |*l Mm*w asitKi (i Pi

CuiwuVWE.W. • [*|OM"ir-.'.'u*.«>i'*i*« South (1 C IP) • t*l G«wu Oilnti (1 C IP) • f M| MuMha OWMCt OP]

(.-wtr^Wn,-.!.. • |*| Owlncli « Masvmgo Pnjwne* (7 C 7 P|
K W

MM * |*|f>.lnm i*M*KH*niH>ioviricf (3C «P]

* [•] :.»•••* tw.in.-i n P, . [•] VML-A nun - (1 P)

' c . [*)ft<M*N»Ownci(iC JP|

** • |n| Jvnnm* Dnwi (1 P)

I ^.KIWI • |"J Cm L-"Od Oiimi (t P|

» [.„<,„.„. G . (•)UjfeM.toMCt{lC IP) "*** .MGMWMkactall • |*] w,.i.,h>.. mm • (i c i PJ

Pages m category 'Dtstncts ol Zimbabwe' k
TPW totowmg 71 p*g*t *i » i1" ctfagny cut d Jl tola "n Ml m», not r*n*ct wcata cnanga* fun mam)

. [..!,., C ,* EHMM G M

. H^ rt L«- GowmmM -u LMar C^-tapmen (Z. nDflOne • &*•* Null- DtMntl • Mat am Dutml

. Gotwa Saul* DUlnci • MwxigH Bwncl
B • Qoramonn ctsinri • U<-M [«» Owno

• BNihntig* [>itn,-t . r*mrvi> nmoft

* B«]un Qlhtel

C H
• Cwtettty Dblnu . rhwttii S

• CnWiivnlia Dislnrl • Sruoiva DiMnet

w

CMfom SIA*•OIH at taMM I County siOttvtiiotn .~.,m~.mm~.~,~~m.

'>.wl«MnlM.l<(mw.XM.H*

Figure 125: The sub-categories and pages within the Zimbabwe sub-category, in the Second-level Division category.

• Item must include the word "of."

• Item must include the ADM level 2 type in its title.

Our algorithm for collection was a little more complicated than for ADM level 1:

1. Descend into the Second-level Divisions category.

2. Collect the names of all countries listed as sub-categories.

3. Store these names, along with the associated ADM level 2 type (e.g., "Province", "District", etc.).

4. For each discovered country.

(a) Descend into the sub-category associated with the given country

(b) Collect all sub-categories of the country that fit our rules for inclusion.

(c) Collect all pages of the country that fit our rules for inclusion.

(d) Collect all sub-categories that meet our rules for descending.

i. Repeat a through d, descending into sub-categories until none matches rules for descending.

(e) Remove duplicate entries from the collection.

(f) Store all items relationally with its associated country.

Using this method we were able to discover 18018 distinct ADM level 2 areas across 120 distinct countries.

113

7.3.2 Upward traversal of Wikipedia

Since the parent-child relationship between categories and pages contained within categories is two-directional,
that is, just as you can view a list of pages that belong to category, upon viewing a specilic page, it will also note
that "This page is a category of ...," it is possible to traverse these relationships from the bottom up as well as
from the top down.

There are two main utilities associated with crawling Wikipedia from the bottom up. The first is that it becomes
possible to construct an attribute-list of all categories that a given page belongs to. For instance, given the page
"http://en.wikipedia.org/wiki/Albert_Einstein", if we traverse its categories upward, we can discover that
he belongs to "Violinists," "German Scientists" and "Jewish Pacifists," among many others. By these three
categories alone, we can infer much of his heritage, his vocation, political beliefs and hobbies.

The second utility is that, given a specific category to search for, it becomes possible to tell whether or
not a given page exists within that category. That is, we can determine that the Bagrami District (http:
//en.wikipedia.org/wiki/Bagrami_District) is an ADM level 2 area of Afghanistan because the Bagrami
District page is an entry in the category of http: //en.wikipedia.org/wiki/Category:Districts_of_Kabul_
Province, which is in turn belongs to the category, http://en.wikipedia.0rg/wiki/Category:Districts_of_
Afghanistan. This, finally, is an entry in http://en.wikipedia.0rg/wiki/Category:Sec0nd-level_administrative_
country_subdivisions, which we know lists ADM level 2 areas. The only constraint is that due to the connec-
tivity of Wikipedia categories, it is possible to mis-classify a page if we are allowed to follow too many categories
"upward." For example, the page "http://en.wikipedia.org/wiki/Dennis_Cole" will eventually end up in the
category http://en.wikipedia.org/wiki/Category:First-level_administrative_country_subdivisions if
allowed to traverse more than 10 levels "upward."

As we can see with the Bagrami District page, generally a page will be linked reasonably closely with the
desired category if it actually belongs within the category (within three levels, in this case). Therefore, we can
give our algorithm a maximum "height" with which to traverse Wikipedia's categories. If the algorithm fails to
find the target category within the height, it is reasonable to assume that the page does not exist within the target
category, so long as the height is reasonably small.

We also found that several categories loop through one another, that is, category A exists as an entry in
category B, which in turn exists in category C. If category C happens to be an entry within category A, a cycle
exists in the tree of category relationships. In order to detect these cycles and avoid an infinite loop, we keep a list
of visited categories and do not re-visit categories. Sometimes a specific category will exist within two "branches"
of our tree, at varying heights. If we visit the category at a very high height, near our maximum, we may be cut off
before we reach interesting information. When we see this category at a much lower height, we would not follow
it again, even though the lower height indicates that it may be much more relevant than originally thought. In
order to address this, we store the height with which we visited each page in the cycle-detection array. If a given
category already exists within the cycle-detection array, but our current height is lower than the old height, we
will traverse the category anyway (and update the entry with the new, lower height).

We developed a recursive algorithm to traverse the tree created by Wikipedia's categories. The algorithm's
recursive branches will traverse until the category under examination matches one of these base conditions, in
which case they will return the specified truth value.

• If the given category has already been traversed at a lower height, return False.

• If the current height is greater than the maximum height, return False.

• If the given category is a member of no additional categories, return False.

• If the given category matches the target category, return True.

Our algorithm is as follows:

1. Initialize an empty array for cycle detection, A.

2. Set target category G and maximum height, H.

3. Set the current page.

4. Examine entry for base conditions against A, G and H.

114

Avg pre-error Wiki areas Avg post-error Wiki areas Average; GADM areas
ADM Level 1 20.58 18.38 14.61
ADM Level 2 139.67 121.73 249.37

Figure 126: The average number of ADM level 1 and 2 areas from pre- and post-error processing Wikipedia, as
well as GADM.

Difference in Collected Areas Number of Occurrences
0 60
<= 10 88
11- 100 13
101 - 1000 2

Figure 127: A distribution of ADM level 1 differences between Wikipedia and the GADM dataset, before error
elimination.

5. If none of the base conditions match, add current category to array A with the current height. Collect all
categories that given page is a member of.

6. Repeat steps 3-5 until no further pages are collected

7. Return logical "or" of all recursive branches. That is, return False if and only if all recursive branches return
False. If even one branch returns True, return True.

We used our algorithm to check against a subset of the results returned by our earlier downward traversal
of Wikipedia. For all 362 ADM level 2 areas we were able to successfully recurse to the category http://en.
wikipedia.org/wiki/Category:Second-level_administrative_country_subdivisions within two levels.

7.3.3 Quality Analysis

Since members of each category must be included manually, we postulated that it might be possible for errors to
exist within the category dataset. That is, a given Wikipedia page might be mis-categorized, specifically either a
valid ADM area included in the wrong country or a page representing an invalid ADM area (a person associated
with a particular country, for instance) that belongs directly to a First-level or Second-level Division category.

We postulated that we might find these errors based on two attributes: if an entry contains a geo-location,
that is, a set of latitude and longitude points, it is probably a valid area. If the entry's title contains the type of
ADM area that it is supposed to represent (e.g., "Cerrillos Department"' of Argentina, since Argentina's ADM 2
areas are called departments), it is also probably a valid ADM area. If we examine articles that do not contain
either a geo-location or the ADM area type, we've probably found a page that his been mis-categorized.

For example, if we examine the ADM level 2 areas of Argentina in this manner, we find that 3 of 218 entries
fit our rules for exclusion. They are "Partidos of Buenos Aires Province," "Papagayos," and "Punta Delgada." Of
these, the first is a category of Partidos in Buenos Aires, the second is a small village in Argentina and the third
seems to be some form of tourist area. None of these appear to be valid ADM level 2 areas and thus our rules for
exclusion hold true in this area.

Of the 3850 previously-discovered ADM level 1 areas, 412 were marked as invalid, leaving 3438 distinct areas.
Of the 18018 previously-discovered ADM level 2 areas, 2314 were marked as invalid, leaving 15704 distinct areas.

We also wanted to examine our dataset against a known source. We chose to compare our results against the
data collected in the database of Global Administrative Areas (GADM). We extracted ADM level 1 and 2 areas
from the Google Earth KMZ maps-similar to our methods used in May, except that we did not care about the
specific boundaries, only the names. We were able to collect ADM level 1 information for 163 of 183 countries and
ADM level 2 information for 101 of 120 countries.

Figure 126 shows a table containing general information on the two ADM area result sets. Figures 127 and
128 show a binning of the differences between our findings with Wikipedia and GADM. Figures 129 and 130 show
a binning of the differences once we ran our dataset through the previously described error analysis.

115

Difference in Collected Areas Number of Occurrences
0 7
<= 10 26
11- 100 43
101 1000 20
1001 - 10000 5

Figure 128: A distribution of ADM level 2 differences between Wikipedia and the GADM dataset, before error
elimination.

Difference in Collected Areas Number of Occurrences
0 57
<= 10 92
11 - 100 13
101 - 1000 1

Figure 129: A distribution of ADM level 1 differences between Wikipedia and the GADM dataset, after error
elimination.

7.3.4 Non-Existent Wikipedia Pages

We investigated the use of non-existent Wikipedia pages to gather further ADM level 1 and level 2 data. Since
DBPedia can only crawl Wikipedia pages once they exist, DBPedia misses out on lists of Wikipedia links that point
to non-existent pages. That is, if a particular ADM level 1 page lists all associated ADM areas with links to their
respective pages, a red-colored Wikipedia link informs the user that, while the listed item should be a valid page,
no one has created an entry for it. Figure 131 displays these links for the Coast Province. Using these lists, it
may be possible to extract additional ADM areas from Wikipedia's pages.

The difficulty lies in the fact that Wikipedia is only pseudo-organized. Here are three examples of pages that
contain non-existent links:

1. http://en.wikipedia.org/wiki/Ghor_Province

2. http://en.wikipedia.org/wiki/Debub_Region

3. http://en.wikipedia.org/wiki/Coast_Province

Although it is very easy to differentiate links to valid pages from links to invalid pages, in examining just these
three links we find several major problems that make it very difficult to programmatically determine which links
are valid links to process.

We notice that the first page contains non-existent links within the subtext of the article, completely unrelated
to ADM information. The second page contains useful non-existent links that point to ungathered ADM informa-
tion in a table format. Since the page's non-existent links contain only ADM areas, this page could be potentially
useful. The third contains ADM information but also nonexistent links to capital cities within the same table
structure, with no general or extensible way to tell the difference.

Although there are clearly pages that contain useful, ungathered ADM area information, we can see that it
would be very difficult to programmatically discern the difference between useful pages, such as the second, and
useless or difficult to parse pages, such as the first and third.

7.4 Feature Gazetteer generation

Following the relative success of our Administrative Area gazetteer generation, we chose to use our "downward
traversal" of Wikipedia algorithm to generate three additional partial feature-set gazetteers. Using Wikipedia'*
categorical organization of pages, we collected a ten-country gazetteer for "Populated Places," "Mountains" and
"Lakes".

116

Difference in Collected Areas Number of Occurrences
0 6
<= 10 29
11- 100 39
101 - 1000 21
1001 - 10000 6

Figure 130: A distribution of ADM level 2 differences between Wikipedia and the GADM dataset, alter error
elimination.

en wikipedii c*g

District* «fi«t 2007

£Z,» dnlncl !*•• be

Fi,M. B,.r*
-

KM K*n

UMM Ckngpium
Ki0«ngo

KMM. KM*

UM E*»I KUIn*lnl

mjjjjj^Lfmi

-.'.*.-» """"

<n DM*

WUnOWV

n 2TO7 (i Kenya HKUakia Hvtis *i Co«s!

|««) [M*| |«1]

Figure 131: An example, in red, of how Wikipedia lists links to non-existent pages.

In addition, we chose to include two generic attributes, the latitude/longitude point and Wikipedia's reported
textual location (country) and one gazetteer specific attribute, population for populated places, elevation for
mountains and depth for lakes.

Finally, we examined our gazetteers against the ontology map provided by DBPedia in order to measure the
coverage provided by DBPedia versus Wikipedia's categories.

1: Populated Places
We located the root category Populated Places by Country (http://en.wikipedia.org/wiki/Category:

Populated_places_by_country) and selected 10 reasonably populated country sub-categories for traversal. Simi-
lar to our prior downward traversal, we chose to aggregate the list of pages and sub-categories within each country's
category. We used the same rules for inclusion as before, including sub-categories that existed within alphabetical
ordering and excluding pages and sub-categories that contained certain words (e.g. "list,"' "template").

Figure 132 gives a short summary of our findings. In addition, we were able to extract latitude/longitude points
for 75.34% of the features listed in our gazetteer. We found population information for 54.30% and Wikipedia
reported the country for 87.15% of the extracted features.

Further, when checked against DBPedia's ontology map we found that DBPedia was missing ontology mappings
entirely for 26.31% of features. We believe that this is because many of the extracted pages did not contain an

117

('mint IV Gazetteer size NGA Gazetteer
Afghanistan 822 31045
Colombia 1052 26341
Samoa 156 400
Serbia 93 1 8430
Suriname 113 415
Sweden 2130 24762
Tajikistan 305 2397
Tunisia 283 1722
Uganda 235 5483
Zimbabwe 259 1386

Figure 132: A per-country breakdown of the number of populated places acquired for each country. Also features
the number of populated places featured in the NGA gazetteer.

Country Gazetteer size NGA Gazetteer
Afghanistan 14 13869
Brazil 27 706
France 66 1062
Indonesia 147 13565
Kosovo 65 0
Mexico 31 5377
New Zealand 84 3241
Switzerland 912 265
Turkey 41 4060
Venezuela 23 4092

Figure 133: A per-country breakdown of the number of mountains acquired for each country.

infobox, which DBPedia relies on for ontology mappings.

2: Mountains
We located the root category Mountains by Country (http: //en.wikipedia.org/wiki/Category :Mountains_

bycountry) and selected 10 reasonably populated country sub-categories for traversal. We again used the same
rules as from "Populated Places" and as in our prior "downward" traversal of Wikipedia.

Figure 133 gives a brief summary of our findings. In addition, we were able to extract latitude/longitude
points for 92.62% of our mountain features. We also extracted the elevation for 86.67% and Wikipedia reported
the location for 48.58% of features.

Further, when checked against DBPedia's ontology map we found that DBPedia was missing ontology mappings
entirely for 14.61% of features. Again, we believe that this is because many of the extracted pages did not contain
an infobox, which DBPedia relies on for ontology mappings.

3: Lakes
We located the root category Lakes by Country (http: //en. wikipedia. org/wiki/Category: Lakesbycountry)

and selected 10 reasonably populated country sub-categories for traversal. We again used the same rules as from
"Populated Places," "Mountains" and our prior "downward" traversal.

Figure 134 gives a brief summary of our findings. In addition, we were able to extract latitude/longitude points
lor 74.95% of our lake feature's. We also extracted the depth for 26.19% and Wikipedia reported the location For
92.96% of features.

Further, when checked against DBPedia's ontology map we found that DBPedia was missing ontology mappings
entirely for 23.29% of features. Again, we believe that this is because many of the extracted pages did not contain
an infobox, which DBPedia relies on for ontology mappings.

118

Country Gazetteer size NGA Gazetteer
Bolivia 108 203
Chile 58 435
China 58 644
Estonia 162 246
Hungary 20 285
Italy 66 161
New Zealand 174 345
Russia 71 13717
Switzerland 217 66
Turkey 32 212

Figure 134: A per-country breakdown of the number of lakes acquired for each country.

7.5 Wikipedia autocorrection

The linked gazetteer which has been generated for the Afghanistan Places Profile Capstone project as described
in Section 8 is well suited to perform tasks which require well-linked feature data, such as the location of, and
addition to, missing attributes within Wikipedia. Since Wikipedia uses well-structured attribute-data in their
Infobox Templates, the attributes which have been aggregated for the Capstone system might be used to "fill-in"
missing Infobox data.

In this task, we have built a Wikipedia Correction Interface from which an operator may add or correct
Wikipedia Infobox Template information.

7.5.1 Problems in Wikipedia Articles

Wikipedia faces several challenges with the organization of their articles. These can be attributed to the vast
number of articles, imperfect automated editing and simple human error, and fall into two larger categories:

• Mis-Categorization: Infobox Templates and even entire articles might be mis-categorized, e.g.. "Papa-
gayos" (http://en.wikipedia.org/wiki/Papagayos) is categorized as a "Department of Argentina," but
is actually a small village in the Chacabuco Department.

• Missing Attribute Information: We found that only 54.3% of extracted Populated Place features had a
"population" attribute.

Since Wikipedia articles which are linked in our concordance mapping should be de facto correctly categorized,
the Afghanistan Places Profile data is not well suited to discovering instances of mis-categorization. The concor-
dance dataset is, however, very good at filling-in missing attribute information, since Wikipedia articles have been
linked explicitly to populated place features from several other data-sets.

It is for this reason that we developed a console upon which Wikipedia articles can be examined for missing
Infobox attribute information and, when such data is available in our concordance data-set, can be corrected.

7.5.2 Wikipedia Infobox Structure.

In order to extract Wikipedia infobox data, we used their publicly available MediaWiki API [29]. This API is
provided by the Wikimedia Foundation and allows direct access to portions of Wikipedia articles. Although the
API allows a user to query specific sections of an article, which are usually preceded by a textual heading and a
horizontal, ruled line, it does not allow for the direct extraction of an Infobox template.

Infobox Templates are placed in the "0th" section of a Wikipedia article, generally right before the article's
introductory text. This can be seen in Figure 135, where we note that the Infobox is placed in Ab Gafs introductory
section, which begins, "Ab Gaj (or Abgach) is a village in Badakhshan Province in north-eastern Afghanistan. ..."
In the lower portion of this figure, we see the raw text of the 0th section of this Infobox Template. Here we can
again see that, though it begins with the Infobox, denoted by the yellow highlighting, it also contains additional
text.

119

AbGaj
'•1~ iViUMM Of »•» •"i'-CWC***

•bom i mrf« upairta'" oMha maa««g of tnal rNW and ih* A- •.. Darya xd aboul tan rrulai •<

AD G^ 11 <nMMM t» Aj.h. padda Th* popuUdan <* tha riflaga (2003! u «2 '

i IN i«t Daw of tha At- • Wakha

Extftmai imh»

1 Vtgawt PopuiMM [**:*(m B»oa"bshan Pio-va I Badwhriiw PtMnct jatvaph, i

B / *•" 9 uL ' AdWKM • .-[*..» ..MILUII > H*c

Hlafaawa Jttuawt -
offici.l_na— - At S.;
oth.j_r.uU - Ibgao*.

iaativo_aaaM • <••- f;i :maa HIHM uun nan* is MI in Enoliah
inicknaM
iaattlaa»nic_typa - <--roi low, si vni«e. tLeave bUl>H i« ena OMault C«.t-->

>!
•••Ac Sa;"' ICI '"*jgH_t'"i la a I(*iUao«S] :r. ; iBaasbr.ar.ar. trovinc*!] ir notttf«aat«tn (iMgr.ar.ii tan)].<r*f>||Hatl rial

g i(that
riv*i »r,d tba ; [*ani Daryal). «r.d iKut ter. ulcs seuthaaat =f ((Fall fan",al 1 .<ref r.a»«—iaietaei»[i cut EOCb lluf Itll t-

atitKerlina" .eeauthcrs- MiTsr- Adaa»e, Lujwii) a ;tr.*i»- nirla-tmieneal »n3 political ;a«t«i - t Afghan at ar. i at ga*:.-
cng_eai- crioawntn- igrl" rcniat- accaaaaate- 'eaitun* latrlM* IVCIJM-I isata* iyaar-1*1) inor th- ipubliancfAa Muicbi

Druea-u. vatlangaanatait ilocation- i [3ta». ftuatria)] language* iitr- iocie- iaci« iia- ip«o«»- 1*1
<iaf> "•""' '"•""" " '*""*"

Ab Sal ia inhabit** by ; [••ktu lattale gioufi) MM]| p-opl.. th. population :r aha viii... |3Q01] La Mi.<r«f>
{h--p «v-.;n co> 1m: K*M:Ar.MO*1Iision«:!aepoTiM30fflt.par -Jr. 1 tea Nations Er.vnonaar.i Pteotaaaw lidOSI ""aKiar. « «::•

B»p:it":</r«(>.

Figure 135: The Infobox Template for Ab Gaj, presented graphically (left) and as raw text (right).

Because of this, before we can edit the Infobox directly, we must first parse it out from the rest of the article's
text.

7.5.3 Extracting Wikipedia Infobox Templates

We know that the Infobox will always start with the string, "Infobox settlement" in the case of populated places.
Logically, we know that the template's end is denoted by a set of closing brackets (""). With this knowledge,
we can begin our parsing of the template when we find that beginning string. We cannot, however, end parsing
upon reaching the first set of closing brackets that we come across. The Wikipedia Infobox syntax allows for
sub-templates to be inserted within the larger "parent" template. That is, we might have an infobox that looks
as such:

{{Infobox settlement
<!—See the Table at Infobox settlement for all fields and descriptions of usage-->
<!— Basic info >

I name = Kabul
Isettlement_type = City

Icoordinates_region
Isubdivision_type
I subdivision name

= AF
= Country
= {{Flag I Afghanistan}}

}}

Here we see that the attribute "subdivision-name" contains a sub-section which is delimited by double-brackets.
Because of this, we must recognize when a new sub-section is instantiated so that we do not accidentally mistake
its closing brackets for the end of the Infobox. To do this, while iterating over the template, we keep a count of

120

the number of open double brackets ("{{") and closed double brackets ("}}")• When these numbers are equal, we
know that we have reached the closing brackets which indicate the end of our Infobox Template.

For example, before iterating over the Kabul infobox, we initialize two variables, openjcount and closedjcount
and set them to zero. Upon reaching the opening line "{{Infobox settlement" we increment the open-count so
that its value is now 1. Since the closed.count is zero, we continue iterating over the infobox. Upon reaching the
"subdivision_name" line, we encounter the first open double brackets, "{{Flag ..." We once again increment the
open-count so that its value is now 2. Immediately after, we encounter the closing brackets for this sub-section,
"Afghanistan}}." We now increment the closed-Count so that its value is 1, and since open-count / closedjcount,
we continue iterating. Finally, we reach the last line of the Infobox, "}}." We once again increment the closed-count
so that its value is 2. Since open-count = closedjcount we know that we have reached the end of the Infobox and
can safely extract this text for further parsing.

After extracting the Infobox section, we also save any preceding and succeeding text so that we can re-insert
it once the attribute-addition is completed.

7.5.4 Parsing Wikipedia Infobox Templates

Now that the Infobox has been successfully extracted, it must be parsed so that existing attributes can be labeled
and missing attributes can be added. In the template syntax, a "|" character denotes the beginning of a new
attribute. Therefore, we first mark all of the locations of the "|" character. One note is that we do not mark
the location of the "|" when it is inside a sub-section, denoted by interior open and closed double brackets. In
this instance, we are only concerned with editing the values of primary attributes, not values contained within
sub-template sections. We also do not mark the "|" character when it exists within HTML comments, which are
denoted by the opening sequence, "<!-" and closing sequence "->." These areas will not be displayed when the
template is rendered and often contain explanatory notes.

Once all of these locations are noted, we split the Infobox into chunks based on these positions. This gives us
sets of attribute-value pairs which we can be further parsed. Finally, we split each pair into two sub-objects based
on the location of the "=" sign. We now have a pointer to each key (the section before the "=") and its value (the
text after the "="). After this step is completed, we now have a fully-formed dictionary of the key-value pairs
within the Infobox.

The Wikipedia bot is now ready to take user-input. Upon receiving additional attribute-values, our system
prepares text for re-insertion.

7.5.5 Preparing Infobox for re-insertion within its Wikipedia article

Before re-insertion of the template can occur, we must first solve several problems:

• Wikipedia infobox templates have a specific syntax with known set of attributes. Since not all linked pages
have infoboxes, and since the Wikipedia Bot should place new attributes in order, it is important to know
the correct infobox syntax.

• Several attribute fields can have multiple entries, e.g., "subdivision_name" can have many numbered entries:
"subdivision_name", "subdivision_namel", etc.. These instances correspond to different levels of administra-
tive divisions within a country.

• Since there is no way to know if the known set of attributes is complete, we must preserve attribute-value
pairs found within a given page that are not found in the known list. That is, we may only have the entry for
"subdivision-name" in the known-syntax for populated places, but if additional "subdivision_name" levels
have been defined, we must re-insert them - and re-insert them in their proper order.

Our algorithm for preparing the Infobox Template for re-insertion is as follows:

1. Initialize a list of "known attributes"

2. Initialize an array of user-supplied corrected attributes

3. Run any formatting rules on user-supplied attributes

• Latitude and longitude are split into degrees/minutes/seconds as separate fields within Wikipedia, but
are retrieved as one field from the user.

121

4. Initialize an array of extracted attributes

5. Initialize an array for the corrected Infobox

6. For each item within "known attributes":

(a) Check to see if the attribute exists within the user-supplied array. If it does, take its value and place
the attribute-value pair in the corrected attributes list

(b) Else, check the extracted attributes for a value, if it exists, append the attribute-value pair to the
corrected attributes list

(c) Else, append the attribute with a blank value

(d) Once appended, check the extracted attributes array for the attribute's next sibling. If it does not
exist within the known attributes array, take its attribute name and value and append to the corrected
attributes list. Continue until a known attribute is discovered; once a known attribute is discovered,
end appending and continue known-attribute iteration as before. This ensures that any additional
attributes which may not exist in the known attributes array are saved and re-inserted into the Infobox.

For example, consider the Infobox Template for the city of Ghorak:

{{Infobox Settlement
I official_name = Ghorak
Isubdivision_type = Country
Isubdivision_typel = [[Provinces of Afghanistan]]
Itimezone = [[UTC+4:30]]
}}

Our "known attributes" are "official-name," "subdivision-type" and "timezone." While iterating through the
"known attributes", we check ahead in the extracted attributes to see if the next attribute exists in the known
list. If it does not, we will append it to our re-insertion text and continue looking ahead until we find an attribute
that exists within the known list.

• Known Attributes: official-name, subdivision-type, timezone

• Extracted Attributes: officiaLname, subdivision-type, subdivision_typel, timezone

1. Check extracted attributes for "official name", it exists so we pull its value, check its next sibling "subdivi-
sion-type". This exists within our known list, so we do nothing.

2. Check for "subdivision-type", it exists so we pull its value. Its next sibling, "subdivision-typel" does not
exist in the known list, so we append it after "subdivision-type". We then check "subdivisioiutypel" for its
next sibling, which is "timezone". Since "timezone" exists, we stop appending and continue iterating over
the known list.

3. Check for "timezone", it exists so we pull its value. There are no additional attributes in the known list or
the extracted attributes, iteration ends.

7.5.6 Re-insertion of the Infobox Template

Once this corrected list is created, the Infobox can be re-built and inserted back into Wikipedia. First, we initialize
a string for the Infobox which starts with the proper syntax, "{{Infobox settlement." Next, we iterate over our
corrected values array and append each key-value pair, one per line, to this string. Finally, we append the closing
double brackets, "}}" which signal the end of the Infobox. We then re-insert any preceding and succeeding text
which was gathered during the Infobox extraction.

We then take our finished string and re-insert it back into the 0th section of the Wikipedia article. This process
ensures that new information can be added to the Wikipedia article while preserving all data which existed there
before.

The user must also provide their own login information to the Wikipedia bot. This is to ensure that the user
has carefully reviewed their editing decisions and gives the Wikipedia editors a marker for double-checking the

122

Mi.Rv

\«rrgalf Data

Paghman (gconames) •

34.5875. 68.953333 Inga) -

34 5875. 08 95333 (gconames I
34.007738,68.935654 <yahooI

34 583. nH.VJ (wltipcdial

WghaniStacl lllil.li •

I a* n I yahoo) >

42SVD9572M730I [ngai>

4'H57(gconanKs)»

Unknown |nonc|>

1-3 kmsijfyuhooH

Unknown (nonel*

\Mk(,u.lii Data

Mam
Paghman

l~
Population (loii

M,. ;il|,.lt

1

Vn-a 1 Total km:

Password

UpMa w*(j«M

iKrqalrrd)

Nairn-

1 Ml.ill..I> 1 \\u

\U.Hs

C<.|llll.lt|..|l

1 ktarkin

Url

1 imrltunm

V|Cttrr1talt "*'*

Paghman (gcotuuncsI •

34.5875. o8W33.3(ngj).

34.5875. bB.95333 (gramme*!
34.0077.18. 68 935654 (yahoo)

34.583. (>8 95 (wikipedia)

Afghanistan (nga)>

Town (yahoo)»

42SVD«J5"'2O2730l (nga).

44157 (gconamcs)f

Unknown (none)*

1-3 kmsq | yahoo)•

Unknown (nonc)>

Sum

LatKudr

1 outfit urte

PHpuhlhiniT<H»l>

1 lU.lTinll dill

U.s i lotalkmZi

Pauword

SuccMihil I pdatr

(Rrqufrrd)

WlktpwHa Data

iPaghman

34 3875

|« 933333

.48137

r
2300

WMpaclaUMt

Update Wfcpaoa

Figure 136: A before (top) and after (bottom) view of the Wikipedia Correction Bot acting on the Infobox Template
for Paghman.

newly added attribute information. Unfortunately the Wikipedia API does not support 3rd party authentication
protocols such as OAuth, so login information must be sent in plain-text. This might be a slight security concern
because if someone performs a man-in-the-middle attack, they might be able to extract a user's Wikipedia login
information. There are some plans to implement a more secure login system for the API in the future [18], which
can then be implemented in the Wikipedia Correction Bot.

Finally, sometimes a captcha prevents the bot from editing a particular Wikipedia page. In these events, our
bot recognizes the need for a captcha and forwards the image back to the user. The user then enters the captcha
text and resubmits their changes. This is to ensure that no automated process can negatively effect a large subset
of Wikipedia articles without human oversight.

7.5.7 Wikipedia Correction Bot Conclusions and screen-shots

The Wikipedia Correction Bot allows users to fill in missing attribute information with known good values. The
Wikipedia Correction Bot operates first and foremost on the principle "do no harm," that is, the Wikipedia Bot
should never programmatically delete information which resides within a Wikipedia Article.

We have also built a basic front-end console for operation of the bot. Figure 136 shows a "before" and "after"
view of the editing console acting on the Wikipedia article for Paghman. Note that in each picture, the attribute
data as aggregated by the Capstone system resides on the left, while the attributes captured by Wikipedia are on
the right.

8 GeoEngine Capstone System

Technical Capabilities

123

Throughout the GeoEngine project, we have explored various forms of geospatial data generation and aug-
mentation for a number of different geospatial features from a wide variety of sources. In these tasks, we have
developed many techniques for extracting, aggregating and categorizing different forms of geospatial data:

1. Missing Attribute Discovery and Correction: We are able to add missing information to existing gazetteers
such as population for populated places within Benin and Germany and elevation for mountains within
Afghanistan.

2. Feature Generation: We are able to discover new features within a target geography such as hospitals in
Chicago and Mosques within Afghanistan.

3. Extraction from Multiple Sources: In order to increase the robustness of our feature data we are able to
extract information from a variety of sources.

4. Conflict Resolution: We are able to rank various candidate answers in order of the confidence of their
correctness.

5. Geospatial Disambiguation: We are able to resolve ambiguities which arise from merging geospatial features
from disparate sources, including conflicting names for a given place or a given name referring to multiple
places.

6. Operation Consoles: We are able to develop intuitive operator consoles in order to provide non-technical
interfaces to the aggregate information collected by our various tasks.

Capstone Project
While developing these techniques, we have discovered an additional problem area: that of the stratification of

attribute-information associated with various geospatial features across many disparate datasets. We believe that
we can apply techniques developed within our previous projects to identify and solve the sub-problems associated
with presenting unified attribution for a given geospatial feature.

There exist a number of geospatial gazetteers which display attribute information for various geospatial feature
sets e.g., a "mountain" gazetteer which might contain geospatial coordinates and elevation or a "lake" gazetteer
which might contain the feature's surrounding countries and its average depth. Further, for any one of these geospa-
tial features, there exist a number of disparate gazetteers which contain both overlapping and non-overlapping
attribute information for a given feature. These gazetteers are generally released from different organizations such
as the National Geospatial-Intelligence Agency (NGA) or GeoNames and are organized and indexed separately, in
an overall non-connected, non-unified structure.

Specifically, this problem is especially prevalent within the "populated place" geospatial feature. One gazetteer
might contain population information, while another holds the feature's elevation. One gazetteer might list only the
feature's primary name, while another will list all of the feature's secondary names. Even when two gazetteers share
an attribute, one gazetteer may populate the attribute more thoroughly than another. For example, GeoNames
lists population of the city of Kabul, Afghaninstan at 3, 043, 532, but that figure is completely absent from the
NGA dataset.

We find this problem area to be particularly relevant to the GeoEngine project and the United States Army.
Consider a soldier deployed in a foreign locality with little ground intelligence, or an intelligence operator who
would like access to a comprehensive profile of a certain locality, including its basic properties, relationship to
other geographical features, key amenities or sub-city features including hospitals, banks or postal offices.

We've identified a number of types of sources which contain various types of information and classified them
into different categories:

• Properties: Properties associated with the property features of a populated place, e.g., elevation, coordinates,
population and name. Sources include the National Geospatial-Intelligence Agency (NGA), GeoNames, Yahoo
GeoPlanet, Wikipedia and Locode.

• Sub-City Features: Features that exist within a populated place, e.g., mosques, schools and hospitals. Sources
include the Open Street Map (OSM) project and Wikipedia.

• Real-Time Information: Transient information that must be gathered in real time, e.g., the weather or local
news. Sources include Yahoo! Weather and Al Jazeera News.

124

Operator Console

1 Linked Gazetteer 1

•gpa Processing

m M A m Extraction

X) flick
VAHOOI EVE

o
GeoNames

Figure 137: The planned multi-layer architecture of the Places Profile.

• Multimedia Information: Audio and Visual information associated with a populated place. Sources include
Flickr, YouTube and Picasa.

• People and Events: People and events which are associated with a populated place. Sources include Wikipedia
and various news sources.

8.1 System design

8.1.1 Places Profile: System Design

Based on our experience in building different technology modules throughout prior tasks, we plan a multi-source,
multi-layer architecture for the Places Profile (see Figure 137).

At the base of our system lies the source layer. Information is aggregated from a diverse set of sources, from
existing feature gazetteers such as the NGA to media items from Flickr to community projects such as the Open
Street Map project.

The information contained within these disparate sources must be extracted in various ways; this extraction
layer presents an adaptable array of methods with which to extract data from our sources. Some sites provide a
public API from which we can request information, while others allow a user to extract a snapshot of their entire
dataset. Still others must be crawled directly from the Web.

Once information is successfully extracted from these sources, we must develop some methods for linking the
data. That is, if two datasets contain an entry for "Kabul, Afghanistan," we must have some way to explicitly link
these features in order to aggregate the attribute information associated with them in each disparate dataset. The
processing layer is responsible for merging feature data, as well as handling conflicts that arise from such unions.

The aggregate information must then be stored in a structure suitable for easy perusal. Since multiple types
of information - property, sub-city, real-time, multimedia and event data - will be stored and semantically linked
within the Places Profile, a variety of structures must be utilized in order to logically retrieve results from our
final dataset. That is, information about the weather in Herat, Afghanistan is held in an intrinsically different
structure than the number and location of mosques within the same city.

Finally, our Places Profile would be considerably less useful without a visual operator console from which
information can be displayed in a non-technical manner, i.e., without requiring knowledge of specific database

125

Attribute Description
UFI (100%) The unique index assigned to each populated place feature.
LAT (100%) The latitude portion of the feature's geospatial coordinate, in dot-

ted decimal format.
LONG (100%) The longitude portion of the feature's geospatial coordinate, in

dotted decimal format.
MGRS (100%) Military Grid Reference System (MGRS) coordinates. MGRS is

an alpha-numeric system for expressing UTM/UPS coordinates. A
single alpha-numeric value references an area that is unique for the
entire Earth.

DSG (100%) Feature Designation Code. A two to five-character code used to
identify the type of Geoname feature a name is applied to.

CC1 (100%) Primary Country Code. A two character alphabetic code from the
Geopolitical Codes (formerly FIPS 10-4 Standard) that uniquely
identifies a geopolitical entity (countries, dependencies, and areas
of special sovereignty).

ADM1 (100%) First-order administrative division code. A two character alpha-
numeric code from the Geopolitical Codes (formerly FIPS 10-4
Standard) describing a primary administrative division of a geopo-
litical entity, such as a state in the United States.

POP (< .01%) Population figures.
FULL_NAME_RO (100%) Full name - reading order. The full name is the complete name

that identifies a named feature. The full name is output in reading
order, "Mount Everest", vs. reversed generic, "Everest, Mount",
as stored in the database.

Figure 138: A table containing the property attributes collected from the NGA.

systems or query languages. This operator console also allows for visual inferences to be made about data within
a given place, e.g., the proximity of several mosques may signal a previously undefined religious center.

It is important to note once again that, while the current development model integrates only free, open source
datasets, the techniques developed can easily incorporate proprietary or classified sources of data.

8.2 Properties gazetteer

8.2.1 Properties Gazetteer Aggregation

Each gazetteer contains a number of overlapping and non-overlapping attributes. The overlapping attributes are
valuable because they allow a means of comparison between each dataset, while the non-overlapping attributes
are valuable because they add more pieces of interesting information to our final gazetteer.

We will describe their various attributes and their recall value from each of our chosen primary gazetteers in
the following sections.

1: National Geospatial-Intelligence Agency (NGA)
The NGA is the United States Department of Defense's primary mapping organization, and is the most feature-

complete of our chosen datasets. Their data is publicly available at http://earth-info.nga.mil/gns/html/ and
can be downloaded as a tab-delimited file on a per-country basis or for the entire world. This file contains all
named features for a given country. We were able to import the data into a SQL database, then, using the dataset's
Feature Designation Code, we extracted all populated place features. In total, we obtained 32, 380 populated place
features in Afghanistan identified by a Unique Feature Identifier.

The gazeteer's primary attributes are described in Figure 138, with descriptions taken from the NGA at
http://earth-info.nga.mil/gns/html/gis_countryfiles.html. An example of extracted values for three
cities can be seen in figure 139. We notice that the NGA dataset contains very few interesting attributes and is
used primarily as a basis for uniform spelling of geographic names. We discover that both population and elevation

126

Attribute Kabul Kandahar Herat
UFI 3378 135 -3379064 -3377359
LAT 34.516667 31.613323 34.348167
LONG 69.183333 65.710126 62.199673
MGRS 42SWD1682719461 41RQR5709800766 41SMU2639401051
DSG PPLC 1'1'I.A 1'1'I.A
('('1 AF AF AF
ADM1 13 23 11
POP 0 0 0
FULL.NAMEJtO Kabul Kandahar Herat

Figure 139: A comparison of values gathered from the NGA dataset.

Attribute Description
geonameid (100%) Integer ID of record in GeoName's database.
name (100%) Name of the populated place feature.
asciiname (99.98%) Name of the populated place feature in plain ascii characters.
alternatenames (97.33%) Alternate names for the populated place feature, comma separated.
latitude (100%) Latitude in decimal degrees.
longitude (100%) Longitude in decimal degrees.
country code (100%) ISO-3166 2-letter country code.
adminl code (100%) FIPS code.
population (.23%) Population figure.

Figure 140: A table containing the property attributes collected from GeoNames.

have very low recall and that the records contain administrative area division information only at the broadest
resolution.

One interesting thing to note is that entries in the NGA are on a per-name basis. That is, when a particular
feature (as identified by its UFI) has multiple names, there will be multiple entries in the dataset. We use the
NGA's "Name Type" field in order to identify the feature's "primary name," then aggregate the rest as a list of
"secondary names."

2: GeoNames
GeoNames is a "geographical database ... available for download free of charge under a Creative Commons

attribution license. It contains over 10 million geographical names and consists of 7.5 million unique features
whereof 2.8 million populated places and 5.5 million alternate names." 5 Like the NGA, GeoNames provides tab-
delimited country files for download. After importing to a SQL database, we were able to extract 30,875 features
using GeoName's Feature Code to identify populated places. Features are identified by GeoName's geonamesid.

Their primary attributes are described in Figure 140, with descriptions taken from http : //download. geonames.
org/export/dump/readme.txt. An example of extracted values for three cities can be seen in Figure 141. We
note that GeoNames, similar to NGA, provides few additional attributes. Instead, it provides another rich list of
primary and secondary names for populated place features, which can be used to supplement the set of names
provided by the NGA gazetteer.

3: Yahoo
Yahoo GeoPlanet is a public service which provides access to geo-tagged features via a REST API. All ge-

ographic features have a unique Where On Earth ID (woeid) assigned to them. The API allows traversal of a
given woeid's descendants - that is, given the woeid for Afghanistan, all geographic features contained "within"
Afghanistan can be traversed. Using this traversal, we extracted 628 total records which corresponded to Yahoo's
Place Type Name "Town" as populated places.

5Taken from the description found at http://uww.geonames.org/about.html.

127

Attribute Kabul Kandahar Herat
geonameid 1138958 1138336 1140026
name Kabul Kandahar Herat
asciiname Kabul Kandahar Herat
alternatenames Cabool, Caboul, Cabul, ... Candahar,Kandagar,Kandahar, ... Gerat,Herat,Herat, ...
latitude 34.52813 31.61332 34.34817
longitude 69.17233 65.71013 62.19967
country code AF AF A I'-
admin 1 code 13 23 ll
population 3,043,532 391,190 272,806

Figure 141: A comparison of values gathered from the GeoNames dataset.

Attribute Description
woeid (100%) Where On Earth Identifer.
placeTypeName (100%) Localized name of the place type.
name (100%) Localized name of the place.
latitude (100%) Latitude in decimal degrees.
longitude (100%) Longitude in decimal degrees.
country (100%) Localized name of the country.
adminl (100%) Localized name of the subcountry admin area.
admin2 (100%) Localized name of the subadminl admin area.
locality 1 (100%) Localized name of a populated place such as a town or village.
locality2 (01.59%) Localized name of the sublocality such as a suburb or neighbor-

hood).
popRank (98.41%) Binning code representing the population size, e.g., "10" refers to

a population of 30,000-100,000.
areaRank (98.41%) Binning code representing the size of the place, e.g., "10" refers to

an area of 30,000-100,000 km2

Figure 142: A table containing the property attributes collected from Yahoo.

Yahoo's feature's primary attributes are described in Figure 142, with descriptions taken from http: //developer.
yahoo.com/geo/geoplanet/guide/api-reference.html. An example of extracted values for three cities can be
seen in Figure 143. We notice immediately that Yahoo contains a much higher recall for a populated place's
population. We also notice a high recall for a new attribute, Yahoo's areaRank, which gives an approximation of a
populated place's area. We believe that this high recall is attributable to Yahoo's low total recall across populated
places within Afghanistan - we were able to extract only 628 total places as opposed to the more than 30,000
obtained from NGA and GeoNames. We believe that these results from Yahoo represent only the most populous
features within the country.

4: LOCODE
LOCODE, also known as the "United Nations Code for Trade and Transport Locations" is managed by the

United Nations Economic Commission for Europe but operates as a collaborative project across many international
entities. LOCODE data can be obtained as a download in many formats or at http://www.unece.org/cefact/
locode/af .htm. We chose to crawl this URL, obtaining 54 distinct features for Afghanistan.

Their primary attributes are described in Figure 144, with descriptions taken from http://www.unece.org/
cefact/locode/DocColumnDescription.htm. An example of extracted values for three cities can be seen in Figure
145. Since LOCODEs contain specialized data concerning trade and transport locations, they provide relatively
few populated place results within Afghanistan. The Function attribute, however, adds valuable information to
populated places linked to a LOCODE e.g., if the feature provides a rail terminal, an airport terminal or if the
feature is a major postal exchange point.

128

Attribute Kabul Kandahar Herat
woeid 1922738 1935376 1935285
placeTypeName Town Town Town
name Kabul Kandahar Herat
latitude 34.53091 31.61087 34.345081
longitude 69.136749 65.700279 62.186649
country Afghanistan Afghanistan Afghanistan
admin 1 Kabul Kandahar Herat
admin2 Kabul City Kandahar City Herat City
locality 1 Kabul Kandahr Herat
locality2
popRank 13 11 11
areaRank 4 3 2

Figure 143: A comparison of values gathered from the Yahoo dataset.

Attribute Description
LOCODE (100%) Alphabetic LOCODE identifier.
Name (100%) Name of the place.
SubDiv (38.89%) The ISO 1-3 character alphabetic and/or numeric code for the ad-

ministrative division of the country.
Function (94.44%) Contains a 8-digit function classifier code for the location.
Status (100%) Indicates the status of the entry.
Coordinates (46.30%) Geographic Coordinates in DMS format.

Figure 144: A table containing the property attributes collected from Locode.

5: Wikipedia
Wikipedia provides a wealth of structured information, not only from its infobox templates, but also from an

in-context traversal of pages associated with a particular category. We used Wikipedia s category structure to
associate pages with the general "populated place" infobox template for specific countries by use of the 1st and
2nd order administrative division categories which contain sub-categories such as "Provinces of Afghanistan." We
used this same structure to locate Wikipedia articles on populated places within Afghanistan by traversing the
sub-categories contained within the Wikipedia category "Populated places in Afghanistan by province," located at
http://en.wikipedia.org/wiki/Category:Populated_places_in_Afghanistanby province.

Once extracted, these pages could be parsed for useful information - namely the categories a given page
belongs to and its infobox attributes. We were able to extract 844 such articles. Their primary attributes
are described in Figure 146. An example of extracted values for three cities can be seen in Figure 147. We
notice that even Wikipedia's infobox is only semi-structured - that is, not all infoboxes contain exactly the same
information, presented in exactly the same way, e.g., Kabul (http://en.wikipedia.org/wiki/Kabul) has the
population field titled "Population (2008) - Metro" while Herat (http://en.wikipedia.org/wiki/Herat) is listed
as "Population (2006) - Total." These small textual differences make automated, mass extraction and aggregation
of attributes slightly more challenging for Wikipedia. Fortunately, since the set of valid populated place pages has
been aggregated, it is always possible to develop additional techniques to add more attributes from Wikipedia's
infobox templates as well as their category listings and unstructured text.

8.2.2 Gazetteer Linking

There are several gazetteer-linking projects currently active; a map of NGA Unique Feature Identifiers to GeoNames
geonamesids has been compiled while Yahoo provides a public "concordance" API which maps between several
datasets. Gazetteer linking is required to knowledgeably match features across datasets. This solves the problem
of matching names where multiple features have the same name. These and other gazetteer linking methods will
be described in the following sections.

129

Attribute Kabul Kandahar Herat
LOCODE AFKBL AFKDH AFHEA
Name Kabul Kandahar Herat
SubDiv
Function --345--- --34 ... 4

Status AI AI AI
Coordinates

Figure 145: A comparison of values gathered from the Locode dataset.

Attribute Description
WikiPagelD (100%) A numeric Wikipedia page identifier.
Article (100%) Name of the article associated with the populated place.
Latitude (94.91%) Latitude in decimal degrees.
Longitude (94.91%) Longitude in decimal degrees.
Location (92.65%) The country which the populated place resides in.
Population (06.87%) Population figures.

Figure 146: A table containing the property attributes collected from Wikipedia.

1: NGA to GeoNames
As the NGA gazetteer provided the largest feature set, it was chosen as the "base" to which all of the other

gazetteers will be linked. The GeoNames service provides a robust, tab-delimited mapping file between NGA's
Unique Feature Identifiers and GeoNames's geonamesids. Once downloaded, we imported the mapping file into
a SQL database for easy analysis. We then created an index table that mapped known NGA populated place
features to known GeoNames populated place features within Afghanistan. We were able to make 32, 111 such
connections.

2: Yahoo Concordance Map
As part of its GeoPlanet service, Yahoo provides a "concordance map" API which, given a namespace and an

ID, will return all other IDs associated with a given place. That is, if the concordance map API is sent GeoNames
as the namespace and the geonamesid for Kabul, the Yahoo API will return all available IDs associated with the
populated place Kabul. These include LOCODEs, Yahoo's WOEID and Wikipedias WikiPagelD, among others.
We used GeoNames as our namespace in an attempt to match various IDs to the 32, 111 records we had previously
linked between the NGA and GeoNames datasets. We found, however, somewhat poor recall in almost all areas.
Of the 32, 111 GeoNames records, we were able to match 165 to the available 628 populated places discovered with
Yahoo's WOEID. We were able to match only 19 of the 54 total LOCODE entries and found that zero Wikipedia
WikiPagelDs were linked.

3: GeoNames Alternate Names Map
On the GeoNames public forum, we located an extensive list of alternative name matchings between GeoNames

and NGA, which also included Wikipedia WikiPagelDs. Using this file, we were able to link 79 Wikipedia pages
to NGA and GeoNames features.

8.2.3 Gazetteer Aggregation

As was noted in the description of gazetteer attributes, several attributes overlap across multiple datasets. In cases
where attributes overlap, we must choose which values will represent the "primary" value and which will be stored
as "secondary" values. The final gazetteer should include as much information as possible, so that a null value
from a dataset should never be assigned the "primary" value when another dataset successfully recalls a value.

Using these two guidelines, we settled on a "waterfall" method to assign primary values. For each attribute, we
choose a hierarchy of datasets. Starting from the top of the hierarchy, we traverse downward until some dataset
contains a non-null value for the attribute. We assign this first non-null value as the "primary" value and store
the remainder as "secondary" values.

130

Attribute Kabul Kandahar Herat
WikiPagelD 16826 17260 14128
Article Kabul Kandahar Herat
Latitude 34.53306 31.61694 34.34194
Longitude 69.16611 65.71694 62.20306
Location Afghanistan Afghanistan Afghanistan
Population 2,850,000 468,200 349,000

Figure 147: A comparison of values gathered from the Wikipedia dataset.

Rather than define these hierarchies for each attribute, we chose to group attributes into three families and
assign a waterfall hierarchy to each family. These families are defined in the following sections.

1: "Names" family
This attribute family contains items associated with a populated place's name and consists of the following

attributes:

1. Primary Name

• Primary name of the feature.

2. Secondary Names

• Aggregate list of secondary names.

3. ASCII Name

• Primary name in ASCII format.

4. Place Type Name

• Type of place, e.g., "Capital," or "Primary Administrative Division Seat."

Rather than collecting a single primary value for the secondary names, we aggregate secondary names from all
datasets, then remove duplicate values from the aggregate list.

The values in the "Names" family are aggregated in the following order: the NGA, followed by GeoNames,
followed by Yahoo. An example of the aggregate waterfall data for Kabul, Afghanistan is as follows:

• Primary Name

- Kabul (Primary). Source: NGA

- Kabul. Source: GeoNames

— Kabul. Source: Yahoo

• Secondary Names

— Cabool, Caboul, Cabul, Cabul - kabl, Cabul, Caubul, Kabil, Kaboel, Kabol, Kaboul, Kabul, Kabula,
Kabulas, Kabuli, Kabulo, Kabura, Kabul, Kabul, Kampoul, ... Source: Various

• ASCII Name

— Kabul (Primary). Source: NGA

- Kabul. Source: GeoNames

• Place Type Name

- Town (Primary). Source: Yahoo

— Capital. Source: NGA

131

2: "Location" family
This attribute family contains items associated with a populated place's geographic location and consists of

the following attributes:

1. Latitude

• Latitude portion of the feature's geo-coordinate.

2. Longitude

• Longitude portion of the feature's geo-coordinate

3. MGRS

• MGRS location of the feature.

4. ADM1

• Level 1 Administrative Division where the feature resides.

5. ADM2

• Level 2 Administrative Division where the feature resides.

6. ADM3

• Level 3 Administrative Division where the feature resides.

The values in the "Location" family are aggregated in the following order: the NGA, followed by GeoNames,
followed by Yahoo, followed by Wikipedia. An example of the aggregate waterfall data for Kabul, Afghanistan is
as follows:

• Latitude

- 34.516667 (Primary). Source: NGA

- 34.52813. Source: GeoNames

- 34.53091. Source: Yahoo

- 34.53306. Source: Wikipedia

• Longitude

- 69.183333 (Primary). Source: NGA

- 69.17233. Source: GeoNames

- 69.136749. Source: Yahoo

- 69.16611. Source: Wikipedia

• MGRS

- 42SWD1682719461 (Primary). Source: NGA

• ADM1

- Kabul (Primary). Source: NGA

- Kabul. Source: GeoNames

- Kabul. Source: Yahoo

• ADM2

- Kabul City (Primary). Source: Yahoo

• ADM3

132

- Unknown. Source: None

3: "Properties" family
This attribute family contains items associated with a populated place's property features and consists of the

following attributes:

1. Population

• The feature's population.

2. Elevation

• The feature's elevation.

3. Function

• The feature's function, e.g., "airport" or "postal exchange."

4. Area

• The feature's physical area.

The values in the "Properties" family are aggregated in the following order: GeoNames, followed by Yahoo,
followed by LOCODE, followed by Wikipedia, followed by the NGA. An example of the aggregate waterfall data
for Kabul, Afghanistan is as follows:

• Population

- 3,043,532 (Primary). Source: GeoNames

- 1,000,000-3,000,000. Source: Yahoo

- 2,850,000. Source: Wikipedia

• Elevation

- 1,790m (5,873ft) (Primary). Source: Wikipedia

• Function

- Road, Airport, Postal Exchange (Primary). Source: Locode

• Area

- 30-100 km2 (Primary). Source: Yahoo

8.3 Sub-city features

8.3.1 Sub-City Feature Discovery

In addition to the physical attributes which we had previously aggregated, we identified another class of features
that could be associated with a populated place: the sub-city feature. "Sub-city," in this instance, refers to any
feature that resides "within" a given populated place, e.g., roads, bus stops and religious centers. These features
cannot always be linked explicitly to a populated place. For example, the "Hazrati Nabawi" mosque will not
necessarily list its parent city as "Kabul." However, given a coordinate point sufficiently close to a populated
place, we can intuitively establish a link via geo-location association.

Sub-city features provide important, high-resolution details about the interior of a populated place and can
include geographic and non-geographic information, e.g., roads, zoning districts and various buildings. Since high
resolution analysis can only be as comprehensive as the dataset from which it is drawn, it is important that the
coverage of sub-city features be as complete as possible. As a proof-of-concept, we assigned an analyst to survey
several sources of sub-city features, specifically targeting Kabul, Afghanistan.

133

Figure 148: A comparison of mapped features from Google (left) to Open Street Map (right). Centered in Kabul.
Afghanistan.

1: Open Street Map
One such collection of sub-city features belongs to the Open Street Map (OSM) group (http: //www. openstreetraap.

org). This open source project allows anyone to submit geo-tagged features in the form of "ways," "areas" or
individual "points."' OSM Ways are polylines that represent "lined" features: e.g., roads, waterways and railways.
OSM Areas are polygons that represent enclosed features such as mapped buildings, lakes and land-use infor-
mation. OSM Points are single point features which can include bus stops, un-mapped buildings and mountain
peaks. Features are added manually, through a user interface, or automatically, using a set of simple map-reading
algorithms. See Figure 148 for a comparison between OSM's mapped features and Google's. We see that OSM
has an overwhelming advantage when populating their map in this foreign locality.

1.1: Obtaining OSM Data
OSM data can be obtained via several channels, including its web interface and an API to Nominatim, the back-

end on which the OSM mapping algorithms run. We chose to use a mass-extraction API provided by Nominatim,
which allows a user to specify a large bounding box from which to collect OSM data.

For our purpose, we divided Afghanistan into three sections, 60-65 degrees east, 65-70 degrees east and 70-75
degrees east, each spanning 29-39 degrees north. We were able to use these smaller bounding boxes to extract
OSM data in the XML format and store them in parse-able files.

OSM data is organized into three primary categories: "nodes," "ways" and "relations." Nodes are the primary
building blocks of OSM data; each node contains a latitude/longitude point and a set of tags. These tags are
usually descriptive information associated with a given point. For example the "Hazrati Nabawi" mosque is
situated in Kabul and contains the tags, "religion: muslim," "amenity: place_of_worship" and "name: Hazrati
Nabawi." Ways can either be polylines or polygons and consist of groups of nodes, referenced by an internal index.
Relations can also either be polylines or polygons and consist of sets of ways and groups of nodes. Additionally,
Ways and Relations may have separately associated tags. An example of this multi-level hierarchy can be seen in
something as simple as a bus route: the entire route is recorded as a relation, with the stops as individual nodes
and the paths between stops as ways. The route can be tagged with a name or number, the stops with location
and paths with the names of traversed streets.

1.2: Organizing OSM Data
After simple XML parsing, we stored the OSM data in four SQL tables: "nodes," "ways," "relations" and

"tags." We placed each OSM data type in its corresponding table and populated the tags table with all OSM tags.
We also stored a reference index in the tags table in order to associate tags with their node, way or relation. OSM
data is originally organized in a "top-down" method - that is, nodes are the primary building blocks and contain
all of the geo-location information in the dataset. Since we are attempting to provide sub-city features "near" a
given populated place, it would be difficult to determine whether a given way or relation should be displayed in
the current data hierarchy, since we would have to check against the nodes and then determine whether any ways
contain the selected node.

134

In order to optimize this search time, we created a "reverse-index" of the OSM data. That is, for each node,
we generated a list of the ways and relations that contained the given node. We then stored these lists along with
each node in the nodes table. Now, when selecting nodes "near" a given populated place, we have been provided
with a list of ways and relations which should also be drawn on the map.

1.3: OSM Results
After traversing the OSM dataset, we obtained a total of 1,025,102 nodes, 58, 150 ways and 347 relations. Of

the 1,025,102 nodes, 4,683 do not belong to any way or relation, meaning that they are stand-alone features.
These features are associated with 158,738 total tags.

Here are two examples of OSM features and tags within Kabul, Afghanistan are:

• Salang Watt Highway

— oneway: yes

— ref: A76

— highway: primary

— created.by: Potlatch 0.8a; JOSM

— name: Salang Watt

• Rabia Balki Hospital

— amenity: hospital

— name: Rabia Balki Hospital

— area: yes

2: Wikipedia features
We postulated that it should be possible to use similar "downward" traversal and extraction methods as in our

prior Wikipedia gazetteer generation projects. Rather than focus on a single category, however, we located a few
very broad categories for traversal: "Categories by Country" (http://en.wikipedia.org/w/index.php?title=
Category:Categories_by_country), "Building and structure types by country" (http://en.wikipedia.org/
wiki/Category:Building_and_structure_types_by_country) and "Buildings and structures in Afghanistan"
(http: //en. wikipedia. org/wiki/Category: Buildings_and_structures_in_Af ghanistan). After traversing
these categories, we stored all of their pages and sub-categories in a SQL database while removing duplicates. We
then crawled all of those collected sub-categories to generate additional sub-categories and pages.

Once this process was complete, we had collected 46,518 combined pages and categories. We examined this
dataset for any entry whose article or parent article contained the string "afghanistan" and gained a total of
508 categories. These categories usually corresponded to lists of geographic features within Afghanistan, e.g.,
"Schools in Afghanistan" (http://en.wikipedia.0rg/wiki/Categ0ry:Sch00ls_in_Afghanistan) and "Mosques
in Afghanistan" (http://en.wikipedia.0rg/wiki/Category:Mosques_in_Afghanistan). We selected these cat-
egories for further traversal. From our prior "broad category" traversal and targeted Afghanistan traversal, we
discovered a total of 1,898 pages associated with the country. Of these, 508 contained infobox templates with
latitude/longitude coordinates. These 508 represent probable sub-city features within Afghanistan.

Two examples of sub-city features collected from Wikipedia are the "Salma Dam," (http://en.wikipedia.org/
wiki/Salma_Dam) whose parent category is "Dams in Afghanistan," (http://en.wikipedia.org/wiki/Category:
DamsinAfghanistan) which is located at the point (34.33083, 63.82528) and the "Afghanistan Uzbekistan
Friendship Bridge," (http: //en. wikipedia.org/wiki/Af ghanistan'/,E2'/,80'/,93Uzbekistan_Friendship_Bridge)
whose parent category is "Bridges in Afghanistan," (http://en.wikipedia.0rg/wiki/Category:Bridges_in_
Afghanistan) and which is located at point (37.2278, 67.4282).

3: Afghanistan Information Management Services
The Afghanistan Information Management Services (AIMS) is a project which is "building information manage-

ment capacity in government and delivers information management services to organizations across Afghanistan."
The AIMS project has created several shape files of features within Afghanistan, which are located at http:
//www.aims.org.af/sroots.aspx?seckeys=69&seckeyo=44&seckeyz=37. We extracted records from one such
shape file, "Place of Interest - (Point)" within Kabul, Afghanistan as proof-of-concept.

135

After downloading the "Place of Interest - (Point)" shape file (http://www.aims.org.af/services/mapping/
shapef iles/kabul/point/placeof interest .zip), we used a Linux utility called "shpdump" (shape dump),
which takes an ESRI shape file as input and outputs a plain-text file of the features contained within the file. This
file was then imported into an SQL database for use as sub-city features. We were able to capture 38 features such
as the "Restaurant) Haji Baba," a local restaurant, and "Munari Saved Jamaludin Afghan," a historical site within
Kabul. Since these features originated from a shape file, they were already encoded with their latitude/longitude
locations.

Two examples of sub-city features collected from AIMS are the "Hotali Plaza," located at the point (34.51943,
69.17376) and the "Maqbara-i-Abdurahman," (34.52096, 69.1759).

4: Liwal's Yellow Pages and ACBAR
We located two similar business directory websites. The first was Li will's }'< How Pagt S (bttp: //www.yellowpages .

liwal .net/), a website which purports to list businesses within Afghanistan. We extracted 478 features using our
existing page-crawling technology. These entries contained semi-structured "tags," including items such as phone
number and address. The second directory was from the Agency Co-ordinating Both/ for Afghan Relief (ACBAR),
which contains a directory of non-government organizations (NGOs) operating within Afghanistan. We again used
our existing page-crawling technology to extract 551 features. These entries also contain semi-structured tags,
including a textual address.

Since both directory sites shared a similar structure, we chose to process them together. We used Google Maps
geo-coding service to attempt to resolve the features' textual addresses into latitude/longitude points. Of these
1029 total features, we were able to successfully gather geo-coordinates for 954 of them. However, upon further
examination, we discovered that of these 954 entries, we had only collected 72 distinct geo-coordinate points.
Further, of these 72 points, only 6 actually exist within Afghanistan - the remainder are either incorrectly listed
or have the address of their headquarters (in a different country) listed.

We believe that few distinct points were discovered because many of the collected addresses are imprecise, e.g.,
"House No. 75, Street No. 9, Taimani Street, Kabul, Afghanistan," or "Jalalabad Road, Kabul/Afghanistan PO
Box 54 Jalalabad Road Kabul, Afghanistan." These directions are helpful for a resident of the city, but do not
provide enough resolution for Google Maps to correctly geo-code them. Instead, Google Maps resolves to a broader
location; 867 records resolve to the broad coordinate for the city of Kabul, Afghanistan, itself.

Due to the inaccuracy of the geo-coding process, we chose not to use the records gathered from Liwal's and
ACBAR. Further, unless a source provides well-structured addresses, it seems probable that the most helpful
sub-city features must already contain their own geo-coordinate.

5: Additional Sources
Traditional source discovery for sub-city features can quickly become an exercise in long-tail theory; that is,

the bulk of features will reside within a few very populous websites and, in order to collect the remaining features,
many, many additional websites must be located. Rather than exhausting time spent on locating these sites which
may contain only a few features each, the Capstone project turned to alternative sources.

In the mosque discovery task, we had created a Media Aggregation Engine which allowed multi-media website
such as Flickr, YouTube and Picassa to be queried for media-items representing various features within a given
area. We also developed a grouping algorithm which allowed for media items who shared a general feature-type
to be grouped within a small area, allowing a higher confidence guess as to where a particular feature is. That
is, if ten disparate media items report their coordinate as containing a mosque and can be grouped together, that
point is more likely in fact a mosque rather than a single photo or video which might contain a false-positive or
other error.

Using this same technology, we postulated that it should be possible to gather additional sub-city features for
inclusion within the Capstone system. Since media-queries must be directed by keyword, we chose to investigate
two feature types: mosques and schools. Further, since media-queries must also be given a geo-spatial bounding
box, we chose to limit our initial investigation to the city of Kabul, whose coordinates are known from the aggregate
populated places data.

In order to locate mosque points, we used the Media Aggregation Engine, developed in March, with the
keywords: "mosque," "masjed," "masjid" and "islamic center." In order to ensure some accuracy, we also limited
features to any group of two or more media items. In addition, we limited the media sources to only Flickr for
this proof-of-concept test. Using these parameters, we were able to locate 11 total mosque features within Kabul,
some of which can be seen in Figure 149. An additional point of interest within the figure is that some of the

136

I "(34.5136,69.1074;

Figure 149: An overlay of Flickr Mosque features (orange) and Open Street Map Mosque features (brown)

Figure 150: A diagram of the set of queries required to retrieve Open Street Map data from MySQL.

Flickr features fall very close to some of the Open Street Map points, as denoted by the white box drawn on the
figure. This serves to reinforce the high-confidence with which features were selected by media items.

Using similar parameters with the keywords, "school," "university," "college," and "education," the Media
Aggregation Engine was able to locate 5 additional school features within Kabul.

8.3.2 Sub-City Optimization

While examining the Capstone front-end interface, we noticed a major delay when drawing sub-city features on
the Google Map viewport; in some cases it would take between five and ten seconds to draw a set of features.
Upon further analysis, we noticed an inefficiency in the method used to collect this information which was related
to our data-storage engine, MySQL. During our work in January, we noted that storing populated place data as a
MongoDB document was much more efficient than as a set of MySQL tables. The sub-city features had not made
this transition and were continuing to be stored within MySQL; as Figure 150 shows, the process of retrieving
sub-city features from MySQL is non-trivial.

Originally, we stored the sub-city information in the following way: "nodes" are the building-blocks of each
feature and are the only data type to contain latitude/longitude points, "ways" and "relations" are simply ordered

137

" id" : Objectld("4d346cedle56d0d606000000"),
"id" : 22958150,
"name" : "Amu Darya; Amyderya",
"tags" : {

"boat" : "no",
"created by" : "Potlatch 8.7a",
"int name" : "Amu Darya",
"name" : "Amu Darya; Amyderya",
"name:en" "Amudaryo",
"name:fa" " L_j J^e 1 " ,

"name:tg" "OMynape",
"name:tk" "Amyderya",
"waterway" : "river"

},
"nodes" : [

{
"id" : 247365906,
"lat" 37.6865001,
"Ion" 65.3289706,
"tags" : []

}.

{
"id" : 476477994,
"lat" 38.3810486,
"Ion" 64.3656079,
"tags" : []

}
i

"source" : "osm"

Figure 151: A sample sub-city document as retrieved from MongoDB.

sets of nodes which define a polyline or polygon. Further, each node and each way can be associated with a set of
key-value tags which provide further information about the given feature. Thus, in MySQL, the process of selecting
relevant sub-city features must begin with the "node" table, since no others provide a geo-spatial location. Once a
set of nodes is selected by geo-spatial proximity to a given point, each node's list of parent ways or relations must
be examined next, as seen in Figure 150 {1}. Once the appropriate way or ways are selected, the nodes table must
again be examined to determine the entire set of nodes (fig. 150 {2}) associated with the particular way. Finally,
the tags table must be checked for each node and each way in order to collect their key-value tags (fig. 150 {3}).

In order to collect all of the information for a way which contains 20 child nodes, the Capstone system must
perform 43 separate queries: one to discover the initial set of nodes within a given area, one to locate the node's
parent way, one per node within the way (20) in order to get a complete set of coordinates and finally one per
node plus the parent way in the tags table (21) in order to collect all of the relevant key-value tags for the feature.
This process becomes very cost-prohibitive, especially in areas with a high density of sub-city features. Further,
as noted, each node within the given way must be queried individually since the set must always remain in the
same ordered.

Rather than attempt to optimize this method of storage, we chose to move the sub-city feature data into
MongoDB, similar to how the general attribute information associated with a populated-place is stored. In this
way, all data associated with a given sub-city feature can be stored in one place, as seen in Figure 151. Each
document within MongoDB contains all node and tag information for a given feature. In this way the Capstone
can query the MongoDB collection just once for any way which contains a node which is within our specified
geo-spatial proximity, that is, any feature containing a node within the bounds of the Google Maps viewport.

8.3.3 Categorization

The Capstone was presented with a Google Maps overlay which contained three selectable feature types, "ways,"
"areas" and "points." While it is certainly helpful to distinguish between these three feature types, we realized that
it would be difficult to perform complex analysis on the set of features using only these attributes; for example, if

138

' -areas
hospital
bank
cinema
post office
parking
religious
college
university
school

- restaurant
natural
amenity
landuse
building
place
power
address

iF; public building
populated place
other

Figure 152: An overlay of categorized sub-city features within Kabul, displaying religious and restaurant features.

an analyst wished to view all of the mosques within Kabul, the analyst would have to decide if a mosque feature
counted as a point or an area, perhaps choosing one or both, the analyst would then have to mouse over each
presented feature, searching for a mosque.

In order to support complex analysis, the overlay must be able to distinguish features by key categories. After
an initial survey of similar services such as Google Earth [27] and WikiMapia [20], we settled on the following list
of categories:

• Ways:

— "bridge," "highway," "natural," "railway," "waterway," "other"

• Areas:

- "hospital," "bank," "cinema," "post office," "parking," "religious," "college," "university," "school,"
"restaurant," "natural," "amenity," "landuse," "building," "place," "power," "address," "public build-
ing," "populated place" and "other"

We also chose to drop the distinction between "areas" and "points" as there is no logical difference other than
the method in which the feature is drawn on the map overlay.

Since each feature source lists information in its own way, the Capstone system needs a customizable algorithm
for sorting features into each category. The Capstone's current sub-city feature sources include: Open Street Map,
Wikipedia, Afghanistan Information Management Services and Flickr. An example of the categorized sub-city
map can be seen in Figure 152.

1: Open Street Map Categorization
As seen in Figure 151, Open Street Map features contain a list of key-value pair tags such as "amenity:

restaurant" or "name: Kyber Restaurant." Using these tags, we built a set of filtering rules in order to classify
each feature into its appropriate category. For example, the "religious" category examines these tags for keywords
such as "mosque," "religious center," "islamic center" or "temple." If a tag matches a keyword, we classify the
feature as the matching category. In this way, of the 10,473 total Open Street Map sub-city features, we were able
to successfully classify 6, 908.

2: Wikipedia Categorization
During the extraction of Wikipedia articles as sub-city features, the Capstone system captured article name and

parent category name. These two attributes were used to group the Wikipedia articles into their specific categories,

139

similar to how the Open Street Map data was sorted. That is, if a given article belonged to the category "Mosques
in Afghanistan," the Capstone system was able to identify the article as belonging in the "religious" category.
Unfortunately many of the Wikipedia categories are very different than our own mapping categories, such as
"Archaeological sites in Afghanistan" or "Prisons in Afghanistan," so only 13 of 220 captured Wikipedia features
were categorized. This can be remedied by expanding the definition of some categories to include additional
keywords or by expanding the complete Capstone categories list.

3: Afghanistan Information Management Services Categorization
The sub-city features extracted from the Afghanistan Information Management Services (AIMS) group were

stored in shapefiles and pre-sorted into categories such as "restaurant" or "historic site." Since some of the AIMS
categories matched our own, we were able to write a simple translation from their source to the Capstone system.
In this way, all of the AIMS features could be theoretically categorized, but the current Capstone system does not
use "historic site" as an explicit category; therefore, 11 of the 37 features collected from AIMS were placed into
existing Capstone categories.

4: Flickr Categorization
Since feature-discovery on Flickr required the inclusion of keyword information, the Capstone system simply

queried Flickr for two of its existing categories, "mosques" and "schools." This made categorization very simple as
all discovered features were automatically placed within the correct category. All 16 Flickr features were placed
into either the "school" or "religious" categories.

8.4 Real-time media

The Capstone system aggregates from many sources. As proof-of-concept, we chose three areas of study: adding
news stories from AUazeerai, Topix.com [39] and retrieving real-time news information from Twitter [19].

8.4.1 AUazeera Articles

Stories are taken directly from the Middle Eastern news source, Al Jazeera. Stories are currently pulled from the
page in real time using our page-crawling technology.

8.4.2 Topix Articles

Topix is a news aggregation service which draws from several sources. They present each story with its headline
and summary as seen in Figure 153. Since each story shares the same structure regardless of source, it is relatively
easy for the Capstone system, using Cazoodle's web-crawling technology, to extract the article data in a structured
format.

Similar to Al Jazeera, Topix provides an implicit populated-place sorting method. Topix sorts its articles by
country and city, making it easy to extract relevant data for the Capstone system. A user must simply navigate to
http: //www. topic . com/af to view articles about the whole of Afghanistan. In order to retrieve higher-resolution
data, we add the lowercase city name to the end of the URL, for example: http://www.topix.com/af/kabul will
display articles related to Kabul and http://www.topix.com/af/herat will display articles related to Herat.

In this way, the Capstone system aggregates news from Topix in much the same way as from Al Jazeera. An
example of this final aggregation can be seen in Figure 154. Note that stories are sorted by timestamp, regardless
of source.

8.4.3 Twitter Real Time News

Twitter and other real-time news sources have been of increasing interest as an important source of live information.
This has been seen recently in the conflict in Egypt with former president Hosni Mubarak when Twitter was used
to spread information and organize protests [13, 14, 35].

Such real-time information is especially important to an analyst in order to understand the current ground
situation in a given populated place. As such, integration with the Capstone project was necessary.

As proof-of-concept, Twitter was added to the Capstone interface using their public API. This API provides
methods to query for users whose listed location is within a given radius of a latitude/longitude point. It also
displays geo-tagged "tweets" from mobile devices such as an iPhone. Using this API, the Capstone is able to

140

a tws age ; WWur^T^adiac

4/18/20 l^TaparniuTe buildings too
dangerous...Afghan attack...NC...
Nuclear safety officials say It's just too dangerous lor workers to .
enter two reactor buildings at Japan's crippled nuclear power IN
plant

Comment?
; . Wortrl h**w* A»m Afghan i*t»n Beverly Perdue US Governor*

9 tn b ago Star-tctegram corr

Afghan soloTeropensnre at Defense Ministry
By HEIDI VOGT An Afghan soldier opened fire Monday inside the country's Defense
Ministry killing an unknown number of people a ministry spokesman said The
Taliban claimed responsibility tor the attack

Comment?
R# " •;•!• Worid **•** Ana Alghamtlan EifjIotMn

ftrvs ago CBC

Afghan soldier attacks defence ministry compound
An Afghan army soldier guards an entrance of Afghanistan's Defence Ministry in
Kabul on Monday

Comment?
Hvm Ugttanmmn World New*

ntsThTTO ATO soldiers
9 hrs ago

Insurgent
In this photo provided by ISAF Regional Command US Air Force Tech Sgt Jeffrey
Bamett with the explosive ordnance disposal team runs a command wire after
placing an explosive charge next to a rocket-propelled grenade found near Sheik
Marj Boys School on Saturday

Comment?
 ... US MMa>> US »i Fon.. Wor« Nevn A*ia Afgharmtan

Sun Apr 17.2011

Regna Leader Post

Tip^ortraveinng solo
Travelling solo can be a rewarding way to explore the world since II forces you to
break out of your shell and meet other people

Comment?
• Uzbeholan Travel Travel Atghani»tai

vyorn) News Afghanaian

I Afghilni»1an Ujb*fci*tnn Trj.wl

Figure 153: An example of Topix aggregate articles from Kabul with sources underlined in black.

list relevant real-time data for each given place. An example of such can be seen in figure 155. Note that these
examples are primarily foreign language text. Further analysis might include translation to an analyst's native
tongue and filtering based on input parameters, e.g., "conflict" or "protest."

8.5 People collection

Collecting a list of people associated with a given populated place yields several analytical advantages. An analyst
is able to use this list in order to gauge a populated place's relative importance; that is, if Hamid Karzai, the
current President of Afghanistan, frequents a particular area, it can be said that, by association, that place must
be important. Further, by knowing where particular groups of people congregate, an analyst can infer specific
events in an area; that is, a government conference can be inferred by the presence of a group of high-ranking
government officials visiting a particular place.

8.5.1 Populated Place Metadata - People

1: Name collection
In order to create this geospatially-linked person directory, we began parsing data from AUazccra articles.

Articles from AUazeera, as seen in Figure 156, contain a footer which lists all of the entities mentioned therein,
including people, countries, cities and organizations. By focusing on the city of Kabul, we were able to obtain (>97
distinct news articles, which contained 587 individual names (via these entity lists).

From this collection of people, we created a MongoDB [31] collection, with a document for each distinct
name. MongoDB is a schema-less, "no-SQL" database, which allows aggregate data to be stored within unified
"documents." These documents are flexible storage mechanisms that can be modified at run-time without the
overhead requirement of modifying an underlying schema as might be required by a traditional relational database.

141

Map Overlay Media People

M2
FlKkr Voutube News Twitter

W
M2b

Taliban ofTarad bin Ladan trial M 2a

•

M2c

M2d

Hopolrtng Bio aotil of tho Emptro
SSSLiu

Bin L»o«n mad* niwt, not nutorv

•

US JoUnPon policy: E»oo«lno Bio

• .'.

Figure 154: An example of aggregate news stories for Kabul.

Such a flexible storage mechanism allows us to store, in a free-form manner the text and entity lists of each
article that is associated with a given person, as well as the list of people associated with a given place. As shown
in Figure 157, we can use the same data-store to represent data from multiple perspectives that of each person
we have discovered and that of each source article.

2: Name results
Of the list of 587 names as collected from articles linked with the city of Kabul, only 18 appear more than 10

limes. This subset can be seen in Figure 158: as expected, familiar names such as "Hamid Karzai" and "Barack
Obama" are mentioned the most. The names are split in origin between the United States and the Middle East
and contain seven political leaders, six journalists, four military leaders and one diplomat.

An additional note of interest is that the name "Hoda Abdel-Hamid" also appears as "Hoda Abdel Hamid."
Since our collection method was naive about some spelling differences - assuming that each name entry was entered
correctly and that a single name convention was followed - we have picked up several duplicates. Additional
analysis would be required to differentiate names that are meant to be separate entries and which should be
grouped together.

Similarly, well-known places are also mentioned the most. Cities, however, are much more dramatically clumped
together: only six have more than 10 mentions. Since city names are, perhaps, more standardized than people's
names, we do not find the same multi-entry problem as with the prior set of names. Two of these cities, Washington
and New York, come from the United States, while the rest are various foreign locales.

Additionally, these names might be further linked by way of shared articles, cities or organizations. That is,
if a name is mentioned alongside a city, it can loosely be assumed that the name is associated with that city.
Further, if two names appear alongside the same city, it can also be loosely assumed that there exists some link
between those two people. Finally, if two cities are often mentioned together, a link might be assumed between
these locations. That is, if Washington, DC and Kabul are often mentioned together, an analyst might assume
that there is a reasonable amount of interaction between the people of these cities.

1 12

Map Overlay Media People

M3

Fiickr Youtube News Twitter

M3a
jarred 9327
©Steven2452 Having fun tol

M3b

M3c

habsyah69
Tommy page' RT ^detikcom: Tommy Lee: Tak Ada Konser di
Jakarta http7/detk/0SspO via edetikhot

jarred 9327
« pINKmINK k>l don't read tnat

jonnylawsl
fftDanacea Sussing7

PassiionAction
wonder if © keeycee DaDy would make tacos and encnilada's

wi PassiionAction
woke up thinking about all kinoa restaurants on my mind. Lol

mbsc
RT ©2ndBCT4thID: I posted a new video to Foceoook
http:/A.co/4wDa3f\Vk

mbsc
RT ©2ndBCT4lhID Local Afghan flowers nttp:/AC0/]JQ40Gr3

Figure 155: An example of Twitter data originating from Kabul.

8.5.2 Additional Sources

The Capstone system has used AUazeera news articles to link people to populated places by identifying a person
whenever they are mentioned alongside a place. These general methods can be applied to linking one person to
another: that is, creating a link whenever two people are mentioned in the same article. Several additional sources,
including MSNBC and http://www. defense.gov, have also been used to reduce single-source bias and increase
the overall "connectedness" of our person-person linking graph. The details of linking and source extraction can
be found in Section 8.5.3.

We have used these sources to create a well-connected "person-graph," which maps the connections between
different people that are associated with populated places in Afghanistan. This graph allows us to calculate
shortest-path traversals from one person to another: this is very similar to the ideas of "six degrees of separation"
in popular culture and which was originally explored by the paper, "An Experimental Study of the Small World
Problem" [96] or "collaboration distance" in the academic sphere [21]. Additionally, we have used this graph to

Sourta Agaric**

Email e• Shan a } Sand Faadhat*

6. »>££
nend.

to Mt what vour Prwnd* tfiwi 111

Topic. In thai ante*

City Organtutivr

Mohammad Omar MghanxMn Ouaaa TaWban

Mullah Mohammad Omar P alula ri Kaem N atonal Oraoorah) of

Fail a null ah Parian Unllad Statai Nafaai KhaM Security

LuauHah Maahal •111—ill

ZabmuHah Mu|ahid Uniiad Natom
Cumi tunLadan Afghan mteiHganra

Figure 156: A footer to an AUazeera article, showing various lists of entities contained therein.

143

i<P c*i HIOl •4d«.J47bM,*r0SBl/.' I'-'il.

' c Bldefl (tr*ne! ^fcMt.11 on t»C"rir, .

""' ••-i' . . . | i,-t'ne«/a-iia^i311-01'I81111IBJW4TiH99 ht»l"

•

•;•--. ., .»2610-e8'i8le«I'185^2fit'MJel ht»i.-.

"r.

> -"aifal issues security dmHw"

(
l« Urzu mil to Russia irks US-,

>. •hi'p 'i»nqhsri.al)awa nj t 'n*«s/#jrapp'2en.ul/i»l]l-;el4:9mW79 ht«"

(
te [)PIKII> IUMMII **• BntP" •> 1'aq visit'.

)
1.

I

" : *http.'<,en«Ush.al|«e«rs n*t 'news/»iddUsast .<2eil/017291111JB82991.J16S nt»l"

alei>6dO4eJb0OGOG4
"date"
"links"

{
I

"type" . "People",
"list" : |

'Joe Biden',
"Kawal Hyder",
Asit All 7ardan",
SalBan Taseer".

'Ashtaq Kayanr.
"Barack ODara .
Haiiid Karjai",

"Youjul Ra/a Oi lani'
1

"type" : "(.Ountry
•list" : I

"Pakistan*,
"United States'
"Afghanistan"

I

'type' City .
"list" : [

"Islamabad'.
"Kabul",
"Washington"

1

1 type Organisation

"list- . I
"Taliban*,

i Oaeda
OCawa admnistrat:

'Pakistani govenrent
"amy"

I

W ' .

"Biden presses Pakistan on security",
http://english.al]a7eera.net/news/asia/2311/ttl/?8ni1?8W447^,399 htP

Figure 157: An example of two different MongoDB documents. One (left) is from the perspective of a single
person and lists all associated articles. The second (right) is from the perspective of a single article and lists all
associated entities.

Hamid Karzai 193
Barack Obama 56

.lames Bays r<?

Sue Tlirton 33
Stanley McChrystal 28

David Petraeus 27
Zeina Kliodr 19

Hillary Clinton Hi
Robert Gates 18

Richard Holbrooke Hi
Abdullah Abdullah

(iullmddiu Hekniatvar
15
11 Kabul 633

Karl Eikenberrv 13 Washington 11)
Hoda Abdel-Haroid

Daviil ('hater
Hoda Ahdel lliu,iid
Mohammad <)inar

Zeinnrai Bashary

13
13
11
11
11

Kandahar

Islamabad
London

New York

46
28
24
11

Figure 158: The list of names (left) and cities (right) that appear more than 10 times throughout the AUazeera
articles that were collected.

build "micro-consotas" which allow an analyst to explore different aspects of the linked people-data. Section 8.6.6
describes some of these consoles, which include: source-article lists of links generated by each source, a list of
linked cities, a "Co-Mentions" graph which plots the first-order connections of a given person, a "path" console
which allows an analyst to view the linked steps between two given people and a timeline which allows an analyst
to view a given person's temporal importance.

144

8.5.3 People-Name Extraction and Linking

1: Name Collection
Wo have detailed how people-names could be extracted and linked to populated places within Afghanistan

through the use of AUazeera's news articles. In short, articles furnished by ALJazeera contain several lists of
entities which have appeared within the article, namely: people, countries, cities and organizations. Figure 156
shows one such list; in this article which describes the deaths of aid workers in Afghanistan, we can see that the
United States and Afghanistan are mentioned, as well as some of each country's high-ranking officials. Using these
lists, we were able to extract 587 individual person-names, which were linked to the city of Kabul.

2: Linking with AUazeera
By inspection, we found that when two people are mentioned within the text of a given article it is reasonable

to assume a link between them. For example, in a recent story on election fraud in Afghanistan, the names Hamid
Karzai and Fazel Ahmad Manawi are used [11]. Using our linking algorithm, we create and store a link between
these two people.

Upon further inspection, we find that Hamid Karzai is the current leader of Afghanistan and that Fazel Ahmad
Manawi is the chairman of Afghanistan's Independent Election Commission. This is an example of a strong link,
as both of these people are actually linked through their positions in the Afghanistan government. Some links are
weaker: in another recent article, AUazeera interviewed members of the Afghan-American community for their
reflections on how the events of September 11 , 2001, have shaped the political landscape [10] in the United
States. In this article, the many names of the interviewed are listed. Upon further inspection, we find that, apart
from the fact that these people belong to the Afghan-American community, there is no direct link between them.

Therefore, we title these links as "naive" because they do not imply anything regarding the strength, direction-
ality or context of the association between two people. Upon initial analysis, however, we find that even weak links
such as those between the members of the Afghan-American community can be used to describe useful connections
between groups of people.

Using these methods, we were able to gather 5, 899 links among 548 names.

3: Linking with MSNBC
Through the inclusion of multiple sources, we are able to increase our confidence in assigning a "link" between

two people. Further, by including sources from different localities, we are able to obtain an additional perspective
on the interconnections between the people we are working with. For example, AUazeera, which is based primarily
in the Middle East, is a great source for people whose influence is strong in that area. By adding links obtained
through MSNBC, we can also capture those whose influence is strong in the Western world.

The structure of an MSNBC article is slightly different than that of an AUazeera article: MSNBC does not
provide an explicit list of those entities which are mentioned in their articles. This makes collecting novel names
from MSNBC very difficult, as there is no baseline from which to compare or discover new entities. Further, the
text of each article is less relevant for our linking purposes, as it would be quite expensive to collect the content
of each article associated with each person before attempting analysis.

In order to create links with MSNBC articles, we discovered a simpler method. For each person in our AUazeera
dictionary of names, we perform a search on MSNBC's website, with its name as the query. We then store all
resulting article titles from the first ten pages of results, along with their name, in our database. We restrict the
results to the first ten pages to ensure a reasonable level of relevance to the initial search query and also because
it would be prohibitively expensive to exhaustively collect and analyze all articles: for instance, "Barack Obama"
has approximately 573,000 article titles associated with him alone.

Once these titles are collected, we create a link between any two people whose name-based queries resulted in
the same article title appearing in their results. In this way, we assume that articles that appear in a name-based
query must somehow be associated with that person. That is, a search on MSNBC for "Barack Obama'' should
only return results that are somehow relevant to that person. Additionally, as in the AUazeera, we assume that if
two people are mentioned in the same article (or share an article title) that there is some naive link that can be
used to associate them.

As in AUazeera, we see that these assumptions hold true: in an article regarding al Qaeda and the United
States, we find both "Hillary Clinton" and "Barack Obama" mentioned in the article's text, which causes the title
"Clinton: al Qaeda behind unconfirmed threat to U.S.," to appear in queries for both people [33]. Using these
methods, we were able to gather 26 links among 20 names.

1 15

We postulate that these numbers are lower than those gathered from AUazeera for two primary reasons: 1) Our
collection methods with MSNBC are far less exact than those with AUazeera, since the latter is able to provide
explicit lists of the entities which are mentioned in their articles while the MSNBC matching is much more "fuzzy,"
and 2) the collection of article titles from MSNBC was undirected; since the initial queries on MSNBC's website
did not consider existing or potential matches, the title collection was naive, which greatly reduced the chance
that two titles might match.

4: Linking with Defense.gov
Although AUazeera and MSNBC are based in different localities - and can provide different perspectives on

the links between various people - they are both explicitly "news" sources and thus share similar problems in the
ambiguity of their links. In order to counteract this effect, we included one additional source, Defense.gov.

One portion of Defense.gov is dedicated to photographs that have been taken by various military or non-military
photographers. Accompanying each photograph is a short, single-paragraph description of its contents. We found
that many of these photographs contain the names of people that we have already collected through AUazeera. For
example, one photo, which can be seen at the following URL: http://www.defense.gOv//Photos/NewsPhoto.
aspx?NewsPhotoID=14728, shows several members of the United States Military along with what appears to be
two government officials. The descriptive text reads:

Secretary of Defense Leon E. Panetta escorts Danish Defense Minister Gitte Lillelund Bech through
an honor cordon and into the Pentagon on Aug. 17, 2011. Panetta and Bech will hold talks on a broad
range of security issues. DoD photo by R. D. Ward. (Released)

By inspecting this description we see that two people are mentioned: Leon E. Panetta and Gitte Lillelund
Bech. Since these two people appear in the same photograph, it is reasonable to assume that they have met or,
at the very least, attended some event together. In this photo we see that it is an explicit link: "Panetta and
Bech will hold talks on a broad range of security issues." Since these types of photographic links provide a much
narrower context, they provide a significantly stronger connection between their two entities.

Since the Defense.gov website does not provide any sort of "search" functionality on their photos and since
they do not explicitly list the names of people included in each photograph, entity extraction becomes slightly
more difficult.

To start with, we downloaded and stored a reference to each image and that image's description. Next,
we iterated through our dictionary of names, as collected through AUazeera. For each name, we examined the
descriptive text of the image to see if that name appeared within. Because there are often subtle spelling differences
in two instances of a single person's name, we used a slightly "looser" concept of matching very similar to our
previous work on semantic linking. We used a ratio of Levenshtein distance to word length in order to find matches.
Levenshtein distance is a measure of the "edit distance" between two words [30], that is, the number of insertions
and deletions required to transform one word into another.

Since inn lies arc generally composed of multiple words, we broke each photograph's description into tokens based
on the " " (space) character. We also broke the target name into tokens based on spaces. We then Relatively
examined each token in the description against the first token of the target name. If we found a match, we
examined the following token against the next token in the target name, continuing until they no longer matched
(not a valid name match) or we ran out of tokens in the target name (all tokens match, so therefore we have found
a valid match). We defined a "match" as that of a Levenshtein distance to average word-length ratio of less than
or equal to 0.2. That is, if an average of 1 in 5 or fewer characters needed to be changed in order to transform the
first token into the second, then we consider those tokens as matching.

Through these Defense.gov images, we were able to create 620 links among 38 people. As expected, these
numbers are considerably smaller than those found in AUazeera

8.5.4 Linking conclusions

In all, we were able to collect 6, 545 links among 550 distinct names. The most populous link was between the
names "Hainid Karzai" and "Karzai." Inspection shows that this actually reflects two forms of Haniid Karzai's
name, which points out an inherent problem in our name collection: by using AUazeera as our sole source of
names, we are greatly effected by inaccuracies in their articles and the lists that are generated by these articles.
One additional erroneous entry was that of "Abraham Lincoln," whose name was incorrectly categorized as a

146

Number of Links

1828

3 1500

j
£
z

S. IOOO

&
o

I 500

z

f
1 • JP J.1 fi 1 1 6 1. 1. 1 ?. 7 1 3 1. 1 1

•v a -•> t-'itoq.^^j^^,^,^^)^^^^,^

Figure 159: A binning of the number of links between people.

fcceO

Afghanistan Places Profile

(Mt%. KcKtaMr. AfglwHItHI [j
K.nfl.mr.. N»ng»rh».. Alym.lst.n

I NM ASSIFIFI)

Figure 160: The Capstone Front-End's home page, highlighting the populated place name auto-completion for
"Kandahar."

person when, in the article, the author was referring to the USS Abraham Lincoln, an aircraft carrier in the
United States Navy.

The second most populous link was that between Hamid Karzai and Barack Obama, who shared 29 unique
links. Figure 159 shows the number of links between people in our dataset. We can see that a large number of
people share only one linking media, while some share two pieces.

8.6 Operation console

The Afghanistan Places Profile Capstone system is a one-stop shop for information about places in Afghanistan,
collecting information from a variety of sources and visualizing the information in a dashboard interface. The
system integrates traditional geospatial data, such as maps, written descriptions, and facts about places, with
real-time information about weather, news, photos, videos, and people. The system integrates the technologies
and lessons learned in Cazoodle's Phase II Small Business Innovation Research project.

8.6.1 Query Interface

The Capstone Front-End begins with a search-oriented home page, as seen in Figure 160. This portal allows a user
to search for a populated place within our dataset by beginning to type the name of that place. Our system then
performs a series of on-the-fly queries which supply a set of "guesses" of the full place-name to the user. The user
then chooses one such place and proceeds to view the populated place's various aggregated attributes, displayed
within a "detail" page. These "guesses" are powered by a JavaScript action called Asynchronous JavaScript and

147

W«»th«r Display

Attribute Information

Kandahar

Ai»ocl*t»d M-,

AlMCl(tM) Paopl*
VHual M*pDI»pl«y

41BQ«S?D9eO0'M!'4»

Figure 161: An example "detail" page for the city of Kandahar.

XML (A.IAX). These on-the-fly queries use AJAX technology to perform partial searches on the primary and
secondary name attributes of populated place features within the Capstone system.

Broadly, the detail page, as seen in Figure 161, is divided into six logical sections. On the left, we feature
various attributes directly associated with the given populated place (Attribute Information). Above lies a snap-
shot of the current weather conditions around the populated place (Weather Display). On the right, we feature
sub-city (Visual-Map Display) features, media attributes (Associated Media) and people (Associated People) asso-
ciated with the given populated place by geographic proximity. Finally, we display relevant timezone information
(Timezone) in the top right area.

We have chosen the city of Kandahar, located in the Kandahar province of Afghanistan, as our example city.
These same instructions will apply generally to any populated place in our dataset.

The search portal can be accessed at http://geoengine.cazoodle.com/capstone. To follow the examples,
search for "Kandahar" and select the first result.

8.6.2 Attribute Information

The associated attributes section has four distinct areas, highlighted in Figure 162. The sections marked A3 and
A4 are taken from within the same "tabbed" area as seen initially in the section marked A2. The purpose of each
area is described in the following subsections.

Al: Names
This section contains the primary and secondary name attributes for the selected area. Its individual parts are

referenced in Figure 162, section Al and are as follows:

Ala The feature's primary name.

Alb A click-able button that allows the user to specify a new feature name to query, similar to the search-oriented
home page.

Ale A list of secondary names, aggregated from all associated feature gazetteers.

A2: Facts
This section contains various attributes collected from our aggregate dataset. We display the primary-chosen

value for each attribute, along with its original source. We also allow the user to view the secondary values for
each attribute, where they exist. Its individual parts are referenced in Figure 162, section A2 and are as follows:

A2a The first paragraph of the Wikipedia entry associated with the populated place, if it exists. Also links to
Wikipedia.

A2b The title and type of an attribute.

148

Al

 Wlb

"•Kandahar
fill,' v^nh

Facts Hierarchy Nearby Features

A3
ADMl Kandahar (nga)

ADM 2 Kandahar City (yahoo)

ADM 3 Unknown (none)

IKS HwaKTry Mraitty Features

A2 Kandahai or Qaimahar (Pashio/Persian ^UAAOIJUAJ

Gre^k AAfiavfipEia apaxvotiflrjc, Transhieraiiuii A2a
Alexandria Aiachosia) is ihe second laigest city in
Afghanistan with a population of about 450 000 It is the
capital ol Kandahai province located in the south ot the
country at about 1 005 m (3.29/ feet) above sea level The
Arqhandab River runs along the west ot the city
Kandahai' is the latest modified form of rhe ancient name

Coordinates 31.613323. 65710126 (nga).

Country Afghanistan (nga) •

Location Type Town (yahoo) •

MGRS 41RQR5709800766 (nga).

Population A2b 391190 (geonames) -
100,000-300,000 (yahoo) A2c
468,200 (wikipedia)

Elevation 1,000m (3.281ft) (wikipedia).

Area 10-30 kmsq (yahoo).

Function(s) Road Terminal.Aitpoft (tocode)

Facts HieiarcHy Ne artsy Features

A4
Yakh Karez (1,23 km N)
Deh-e Khwajah (1.50 km WSW)
Shahr-e Now (1.88 km El
Khel-e Mulla Alam (2.86 km SW.

Figure 162: A map of the "left"' side of a populated place's detail page, including all sub-sections of the tabbed

A2c The primary and secondary values of an attribute. Secondary values can be viewed by clicking the small
gray triangle to the right of the attribute value, which then expand as shown.

A3: Hierarchy
This section contains primary ADM level 1-3 information associated with the populated place.

A4: Nearby Features
This section contains a list of nearby populated places. It currently shows the name of each place in order of

ascending distance, along with that distance and the cardinal heading to each populated place.

8.6.3 Weather Display

This section contains a snapshot of the current ground weather conditions for the populated place, if available.
Weather conditions are cached within a radius of 0.5 decimal degrees. Cached records expire after an hour.
Weather information is queried from World Weather Online (http://www.worldweatheronline.com/). This
section's individual parts are referenced in Figure 162, section Wl and are as follows:

Wla A graphical representation of current weather conditions. Pictured is "clear night sky."

Wlb A textual representation of the weather conditions. Displays the current temperature, daily high and daily
low in degrees Celsius.

149

Map Ewtur* AttrfeutM

V2
source: Yahoo Aerial
highway: primary
created_by: Potlatch O.lOf
name: Kabul - Kandahar road

Map Feature Attributes Ways

V4a* highway

source: AIMS
aims-Id: R-C2150V4b
alt_name: 2180
highway: track

Figure 163: A map of the "right" side of a populated place's detail page, including all sub-sections of the visual-map
tabbed area.

8.6.4 Visual-Map Display

The Visual section contains features that can be mapped on top of an embedded Google Maps map. Currently
this consists of feature polylines, polygons and points. Polylines are referenced as "ways" in the map, while both
polygons and points are listed as "areas." Its various functions and sub-sections are described as follows:

VI: Google Map controls and Mapped Features
This section contains the map and features high-level sub-city drawing controls as well as standard Google

Maps zooming and map-type controls. Its individual parts are referenced in Figure 163, section VI, and are as
follows:

Via Standard Google Maps map-type controls. Allows the user to switch the base-map between a. standard
"map," with known roads and a "satellite" view.

Vlb Standard Google Maps zooming and panning control. Users can also zoom the map with the mouse's scroll
wheel and pan the map by clicking anywhere within the map and dragging, as if "pulling" the map.

Vic Represents the current location of the mouse-cursor over the map as its geo-coordinates in decimal degrees.

Vld High level controls allow a user to specify, broadly, what type of sub-city features should be drawn on the
map.

Vie Features within the map are click-able entities. Once clicked, details concerning the feature will appear in
area V2. The feature displayed at Vie is a "way," more specifically the "Kabul - Kandahar Road."

V2: Map Feature Information
This section contains information about the map features displayed in the Google Maps overlay above. Once

a mapped feature is clicked, all relevant tags and other information are displayed here. This section is referenced
in Figure 163, section V2.

V3: Additional Map Information
This is the same section as described in VI. It is referenced in Figure 163, section V3. Additional features are

described as follows:

150

Taliban Mia

Afghanistan

Afghanistan

Kandahar

tahban

on

The

International

(1COS)

M3a
Bjariei 9327

M3h

•habsyah69

BJflltfid_932Z
• pINXmINK 101*

11
11 . .-i -. • •

Figure 164: The sub-sections contained within the "Media" tab from the right-hand side of the Capstone front-end.

V3a An example of additional sub-city features selected to be drawn on the Google Maps overlay. Features can
be selected and deselected by simply checking the box next to each item.

V3b This light green polyline is an example of a "Way."

V3c This blue circle is an example of a "Area."

V4: Map Features Tree
This section contains named features drawn within the map represented in a textual "tree" structure, with the

name of each feature as a "root" and its attributes as its leaves. Its individual parts are referenced in Figure 163,
section V4, and are as follows:

V4a An example of a named feature that is drawn within the above overlay. Clicking on the small triangle next
to the name will expand its attributes, while clicking on the name itself will cause a marker to appear on
the overlay, as seen in V4c.

V4b An example of the attributes associated with a sub-city feature currently drawn on the map. These generally
take the form of "key-value" tags.

V4c A marker drawn on the map representing a feature named in section Via.

8.6.5 Associated Media

This section contains the collected media associated with a given area. It aggregates from Flickr and YouTube,
the AUazeera news service and Twitter.

Ml: YouTube
This section contains media items taken from YouTube and Flickr. Media items are discovered using our Media

Aggregation Engine, which queries media items which are geo-tagged near the current location. Both the YouTube
and Flickr sections share a similar structure. This structure is described in Figure 164 Ml as follows:

Mia Media items are sorted by tag. That is, all media items within the "Afghanistan" section feature "Afghanistan"
as one of their media tags.

Mlb Media items are listed within their tag sections. Clicking on a media item will open a new window with the
item's original web-page.

151

M2: AUazeera News
This section contains news stories associated with the selected populated place. Currently stories are taken

directly from the Middle Eastern news source, Al Jazeera. Stories are currently pulled from the page in real time
using our page-crawling technology. The individual parts of the news section are referenced in Figure 164 M2 as
follows:

M2a The headline of each news story. Clicking on this will open a new window with the article's original web-page.

M2b A picture, if available, associated with the news story.

M2c A brief description of the news story.

M2d The date and time and source for each news article. Articles are sorted by date and time.

M3: Twitter
This section contains Twitter data which is pulled from the web in real time. Twitter " Tweets" appear here

via one of two methods: 1) the "Tweet" itself has been geotagged near the current location or 2) the Twitter user
reports their location as being near the current location. The individual parts of the Twitter section are referenced
in Figure 164 MS as follows:

M3a The Twitter user's profile picture and user name. Clicking on either will open a new page with the details
of the "Tweet."

M3b The text of the user's "Tweet."

M3c The date and time when the user's content was posted.

8.6.6 Associated People

The Associated People section contains a list of all of the people who have been linked to the given populated
place through semantic linking via news articles and other media sources. Figure 165 shows this list, sorted
alphabetically. Clicking on a name will open a new window with seven "micro consoles" which give different views
on the aggregated linking data.

The first three simply display and link to the media items which contain their name from AUazeera, MSNBC
and Defense.gov. The fourth displays a list of all of the cities which appear in the same articles as the person,
along with the frequency of their mentions. The fifth view, "Co-Mentions" shows a graph of the top 30 most
populous links from the active person and their interconnections. The sixth is an interactive console for plotting
the "path" from one name to another. The seventh console shows a timeline-view of the person's popularity from
each of our three sources.

Consoles 1-3: Media View
As seen in Figure 166, the media-viewing consoles display exactly which media items are associated with each

person. In this example, we see a list of articles and photographs which are related to Hamid Karzai. Clicking on
any of these media items will open a new window with the item's original source.

Console 4: City View
The city view displays the frequency with which a person is mentioned alongside a particular city. As Figure

167 shows, Hamid Karzai is very well known in Kabul - he has far more mentions there than any other single city.

Console 5: Co-Mentions
The Co-Mentions console displays a visualization of how the people who were collected via media items are

interconnected. As seen in Figure 168, this console displays top 30 links for a given person. Additionally, the
console displays all of the "interior" links which connect those people who appear in the Co-Mentions graph.
Further, the edges are visually weighted so that thicker lines correspond to links from more media items. The
Co-Mentions graph can be manipulated by dragging the colored nodes so that their labels can be seen more clearly.

On the right of the Co-Mentions console, the list of people who appear in the graph are displayed. Clicking on
one of these names will open a new set of micro-consoles with that person as the central figure.

152

Map Overlay Media People

David Patreus
David Petraeus
Din Muhammad Jurat
Donald Rumsfeld
Eric Schmitt
Farlda
Fazal Ahmad Manawi
George Bush
Glenn Cowan
Gordon Messenger
Greg Minjack
Gulalai Achakzai
Gulbuddin Hekmatyar
Hamid Gul
Hamid Karzai
Hasan Bano Ghazanfar
Hashmat Karzai
Hillary Clinton
Hoda Abdel-Hamid

Husain Haqqani
Ibrahim Haqqani
Jack Straw
Jalaluddin Haqqani
James Bays
James Jones
Jan Mohammed Khan
Jim DeMInt
Jim Webb
John Kerry
Julia Gillard
Vahir 0»nih»r

Figure 165: The list of people who are associated with the current populated place.

Hamid Kami

Al Jazeera

Karzai ytttl to Buwii irhs US
P-*v bombs mat Biden s Wad, visit
Rooue miliies abuse rur»l Afflhan»
Biden presses Pakistan on security
Karzai refused lo sacfc mmisler
Turkey hosts PaMslan-Alohan talks
Obama to Dftwnl Afghan war review
Cable leaks -huit US Atahan Hat
Obama visits S-QQDS in Afghanistan
UICB MB -pad Taaban impostor
Arrests in Afghan poll fraud probe
ire al Atahan poll results
Protesp at Atahan reauHi refaaaed
Taliban imposto' juoed officials'
Atahan poll camMim dtaauinted
Abducted Atahan diplomat freed
Karzai condemns Russian raw)
Atahan rnwia trained m Auatraha
Atahan contractor deadline delayed
K*fT»i We receive caah from Iran
Karz«i tlamt pnvaw tecuntv firms
Troop deals in Atahanistan hil 600
Karza,| firm on private security ban
Atahan poll resuito delayed
Taliban lafca tally Of fortune?
Karzai • vision tor Ata nan man
lack of facts disturbs Petaeus
US bacfci Alohan reconciliation frid
Renewed pusb lev talks with Taliban
US awOno Alohan Taliban talks'
Nato troops lulled in Atahan blast

Hamid Karzai

Karzai Japan oets P p Afghan mining
Atahan preatdent effectvely handed 2nd term World ne*i SouBi
Kfzarti brotiaf w tart |p be on CtA payroll

Ham»d Karzai Latest news, videos and information- mtnbc com
Obama Touoh days ahead m Afghan war Politics While House
Karzai Fined end date needed tor Atahan war - World news Souti
Vole fraud alienator's mount in Afghanistan - World news South
Atahan future gireeiened Dv ex wanords World news - Soutft and
Karzai Atahanistan underfunded - Meoi the Press • msnbc com
Atahanntan l Harmd Karzai
Rival accuses Karzai o< hoping vote Wortd news South and
Karzai offers Taliban government oWce
Kaczafa adviser auesttaned m corrupton case
Karzai endorses Kandahar oc World news South and Central As.a
Karzai acknowledges meelnt» with Taliban

Afghan president offers new Cabinet list • Wortd news - South and
First Read OWcial implie» Karzai uses drugs
Karzai reaffirms 20 U aoal tor security - World news - South and
Karzai NATO raconsfucion bases must oo • World news • Soutn and
E»-U N envoy Karzai may have druo problem
Karzai delavs Atahan peace conference - Wortd news South anq
Wortd BtQfl let's not make tin an issue savs Karzai
Senator Graham says 'stunned- al Karzai comments,
Karzai pushes bach deadline on puns-tor-rum ban
Karzai Afghan torces to take confrol in 7 areas • World news

Hamid Karzai

AlJazeera

MM
HUJS

Atahan President Ham.d Karzai 'gee ves §
Afghan President HamKJ Karzai shades han
Afghan President Hamid Karzai shafes han

kum
Secretary of Defense Robert M Gates meg

MM

Secretory 0' Detar.se Rafett M Gates wj>

feuori
ws sh«

BUSS
insfetq

Tne Tn»d U S Infant* Regimental Comma

Secretary piDefense Donald H RunsfeiQ

Figure 166: The AUazeera, MSNBC and Defense.gov viewing consoles.

Console 6: Path Discovery
The Path Discovery console allows the path between any two people who have been collected via media articles.

Upon typing a name query, the system will use an on-the-fly auto-complete algorithm similar to that of the search-
oriented home page to automatically generate a list of appropriate names which match the user's query. After
selecting a name, a list of the linking steps between the queried name and the currently active person will be

153

Kabul 633
Washington 49

Kandahar 46
Islamabad 28

London 24
New York 11

Figure 167: The cities with which Hamid Karzai is associated.

Manx am CM

Figure 168: The Co-Mentions graph for Hamid Karzai.

displayed. As Figure 169 shows, these steps include a list of the linking evidence with which the two people are
associated.

Console 7: Timeline
The timeline console shows the temporal relevance of the active person. As Figure 170 shows, the media items

which are related to the active person are placed on the timeline based on their creation date. These media items
are differentiated based on their source: the green flag represents media from AUazeera, the gray square represents
media from Defense.gov and the green flag represents media from MSNBC. The individual parts of the timeline
are referenced in Figure 170 as follows:

Tl By clicking and dragging horizontally an an "empty" area in the timeline, the operator can scroll through the
years that the timeline covers.

T2 The bottom-left section shows the name of the active person. Additionally, the operator can click on "Legend"
to see a description of each type of media that is plotted (above). Clicking on these media items will filter
the timeline by source.

T3 An individual media item. Clicking on it will open a window with more information: see T4

154

Hamid Karzai

Al Jueen MSNBC Defeme.gov Cities Co-Menttoni Relation* Timeline

Victor rvanov

i tUmM Karai
o Oframa to pre sen; Afghan war review (al|azeera i
o Karzai We receive cash from Iran (aliazeara)

Troop deaths in Afghanistan hit 600 (aljazeera)
Afghan-Pakistan transit pad skincd (al(azeeral
Karzai 'seeks terror list revision' taljazeara)
Karzai meets US envoy amid tension ial|azeera)

(Tension as Karzai meets US envoy (altazeera)
Karzai admits tensions with US (aljazeera)

° US envoy set for Afghanistan talks I aljazeera i
2 Richard Holbrooke

•• US -ignored advice' on Afghan druos laliazeera I
3 Victor rvanov

Figure 169: The path which links Hamid Karzai to Victor Ivanov.

Dcknu gov CUe* Co-Mentm• Rckattona Ttmrli

Figure 170: A timeline of articles relating to Hamid Karzai.

T4 The detail view of a single media item. The title, description and a link to the original source are displayed.

T5 The zoom slider allows the operator to change the scale of time which is shown in the timeline.

T6 Additional filtering controls. Clicking on the large gray "F" will allow the operator to filter by article title
and source.

8.6.7 Timezone

As seen in Figure 171, the timezone section features three types of timezone information. First, the current
Universal Coordinated Time (UTC) is displayed as a 24 hour clock. Second, the current local time is displayed as
a 24 hour clock. Finally, a textual representation of the current timezone is displayed; in this case, "Asia/Kabul."

155

I TC 20 37 u-4 • Local 01 07 0-4 (Asia Kabul)

Map Overlay Media People

Figure 171: The timezone information for Kandahar.

9 Phase II Extension Proposal - GeoLinker

The Army's Commercialization Pilot Program is meant to facilitate the transition from Phase II SBIR contract
work to acquisition by the United States Army. Additionally, it is meant to increase commercialization aspects of
SBIR software. From their website:

The objective of this effort is to increase Army SBIR technology transition and commercialization
success thereby accelerating the fielding of capabilities to Soldiers and to benefit the nation through
stimulated technological innovation, improved manufacturing capability, and increased competition,
productivity, and economic growth.

Cazoodle has submitted one previous CPP proposal, which will help by virtue of increased clarity and com-
pleteness of our new proposal. Additionally, we hope that the growth of the Capstone system will demonstrate
our skill in the research and development of geospatial applications.

While the CPP is meant to aid in acquisition and commercialization, the SBIR Phase II Extension is meant to
allow further study of a specific problem, as identified in the Phase II contract work. Throughout the development
of the Capstone system, we have faced the problem of linking geospatial entities across different datasets. We
developed several custom solutions, e.g., to link populated place features across disparate gazetteers or to link
sub-city features within a given populated place.

As an extension for this Phase II work, we hope to develop a more general geospatial semantic linking software,
which will work on any domain with a minimal amount of configuration.

9.1 GeoLinker Prototype
In order to elicit additional support from the United States Army for our CPP and SBIR proposals, we built a
proof-of-concept prototype software, GeoLinker. We built this prototype to test semantic linking techniques in
the geospatial feature domain of "dams."

There exist two disparate gazetteers of dam features in the United States: the National Inventory of Dams
(NID), maintained by the US Army Corps of Engineers, while a completely separate list is maintained by the U.S.
Board on Geographic. Names (GNIS). The NID and GNIS gazetteers have not been synchronized since the early
1980s, which poses problems in inter-department collaboration and accurate inventory examination. Currently,
the NID contains 83,988 dam features, while the GNIS contains only 56,940. The need for synchronization is
obvious.

The GeoLinker prototype makes use of location-based and text-based matching at the core of its semantic
linking algorithm. Location-based matching defines a factor of closeness based on geospatial location that is,
how physically close two dams are, based on their latitude and longitude. Text-based matching uses several
tokenization and "fuzzy-matching" techniques to define a factor of closeness based on dam names - that is, how
closely two dam's names match each other. For this matching, we chose the GNIS features as the "base" dams
and the NID features as the "candidate" dams. That is, we start with a given GNIS feature and attempt to match
one or more NID features to it.

Since text-based matching can become quite expensive, we first choose only a subset of candidate dams that
represent probable matches. These candidates are ones which are either physically close to the base dam - that
is, if we are matching dams in Illinois, it is unlikely that dams in California will provide any matches or have
their latitude and longitude undefined. We include these "undefined" examples; as a percentage of NID dams are
missing their geospatial attributes, but should still be considered for linking. Once this selection is done, we run
a set of text-based matching algorithms which produce different linking metrics.

156

Figure 172: The operator console for the GeoLinker prototype.

<....! inkn: Workload Browiing < ..ti«.lr

Figure 173: The workload browser for the GeoLinker prototype. Massachusetts is highlighted.

Finally, as shown in Figure 172. we present the base and candidate dams in an operator console to allow
an analyst to make final decisions. Throughout the GeoEngine project, we have found that a combination of
algorithmic scoring and human finalization yield the highest rates of precision. This console allows the analyst lo
view our algorithms' output metrics, as well as geospatial and textual data about the proposed candidate matches.
The console then allows the analyst to select one or more of these candidates to link to the base feature.

We hope that this prototype highlights Cazoodle's research and development capabilities while still underlining
the need for additional work in this area.

9.2 Prototype Enhancements

In order to strengthen the impact of our GeoLinker prototype, we made several usability improvements to our
operation console. Figures 173 and 174 highlight these improvements.

The first, dubbed "workload browsing," gives the operator a graphical overview of the overall progress of
gazetteer linking. Dams matching is partitioned by county so as to facilitate a sense of completion; that is, smaller
workload chunks give the analyst a good set of goals and/or stopping-places. Each county is outlined on the map,
with its color providing a graphic view of the linking progress therein. Red counties are wholly unmatched while
green counties are wholly matched; the color fades from the former to the latter as additional links are added.

The second is a graphical progress breakdown from within the linking console itself. The progress bar is

157

Figure 174: The progress bar, highlighted in red.

Matches Per Distance In Mi es

600
58C

500

400

100 264

200

100
64

IlkiUU i. , ii. i , f> 1 A 2. 1 o o n

O O O O O O O O O O V -° ."> ^ -^ *• .*> .fc .^ .* ~°> ,o

Figure 175: A graph that compares the number of linked features to their calculated distance from one another.

separated into three sections: red denotes the number of base features that have not yet been examined, blue
denotes the number of base features for which the analyst has explicitly decided there is no candidate match, and
green denotes the number of base features that have been assigned one or more candidate matches. The purpose
of this progress bar is to give the analyst a real-time view of the amount of work they have finished and to provide
a sense of completion as they work through the linking task.

9.3 Results

Our Contract Officer's Representative, Mr. Caldwell, graciously agreed to test the GvoLinker prototype. He
focused on the state of Massachusetts, examining a total of 1,191 base dams from the Geographic Board of Names
dataset. He matched these against the 1,602 candidate features provided by the National Inventory of Dams.

Of the 1, 191 base features, 1,023 were matched with candidate dams. Additionally, we found that there may
exist some duplicate entries in the base and candidate datasets. By examining the relationships between base and
candidate dams, we determined that 1, 001 of these matches were unique, and the other 22 were duplicates of base
features.

Of these matches, 14 base features were matched with two candidate dams and only 3 base features were
matched with three candidate dams. This data points to a small amount of duplication in the candidate, NID
dataset as well. Additionally, 190 of the base features had no matching dam feature in the candidate dataset. Of
the 1,602 candidate features, 614 were left without matches. These dam features are likely those that are unique

158

Matches Per Distance Rank

£ -J_ 1- 1- IL 1_ L- fl.
•f •*» t? #- #• 1° .<? ^5~ -»T

Figure 176: A graph that compares the number of linked features to their initial ranking in our candidate table.

to each data-set.
Finally, Figure 175 and Figure 176 plot the frequency of matches based on their geospatial distance and ranking

in the initial candidate list, respectively. From these two figures, we see that overwhelmingly, links are most often
found within 0.1 miles and as the first feature in our candidate list, but that there are still some links that do not
meet these criteria. This means that, while we may be able to automatically match a large portion of the dam
features, human verification is still necessary.

10 Concluding Information

In this final section we will discuss two primary topics: possible future directions for the research started in this
SBIR Phase II project and our overarching conclusions on the GeoEngine project.

10.1 Future Work

The future research section is organized to reflect the major research areas that have been described in this report.
These additional avenues of research are inspired by the questions and ideas that were generated as we concluded
each area.

10.1.1 Hospital Discovery

Research questions generated by the Hospital Discovery task have been answered in later Phase II tasks: additional
work in text extraction has been done in the Mosque Extraction and Wikipedia tasks, GeoMerging has been
examined in the Capstone and GeoLinker systems, and several of our projects have included advanced operational
consoles. Since the Hospital Discovery task was meant to resolve loose-ends from the SBIR Phase I work, we find
no novel areas of research from this task.

10.1.2 Mosque Feature Discovery

There remain several unexplored research areas in the Mosque Feature Discovery task, both of which revolve
around language. The first is an improvement in foreign language extraction. While our initial research showed
that the then-current state-of-the-art was insufficiently advanced to support language parsing in Arabic areas,
many advances in automated translation have since been made. Additionally, the extension to other languages
was untested - it may be that our text-based extractors could be extended to Spanish or French without the same
degree of difficulty, which would allow the GeoEngine system to operate in additional localities.

Second, the incorporation of Natural Language Parsing (NLP) with the text-based extractor has not been fully
explored. NLP techniques can be used to give semantic annotation to each token in the input text, which can
then be used as input for the rules, which carry out final entity extraction. Additionally, NLP techniques can yield

159

additional in-context information about otherwise one-dimensional entities: that is, various descriptive words such
as "famous," "ancient" or "rarely used" might be associated as additional attributes of entity extraction.

10.1.3 Discovery of Features from Geo-tagged Images

While several of the algorithms that were developed for this task have been extended for use in the Capstone system,
the full generation of a feature gazetteer has not been tested with our Media Aggregation Engine. Additionally.
the concepts of grouping and inferencing have not been fully matured.

There is room for research in feature generation via untapped media sources and with full grouping and
inferencing capabilities: that is, a system that not only aggregates media items, but uses their tags and geo-
location to construct fully-formed features.

10.1.4 Mountain Attribute Discovery

One area of research left to explore was that of using interpolated data as an error-checking mechanism for manually
entered values. In the initial Mountain Attribute Discovery task, we found that there were several mountains in
the NGA data whose elevation was roughly three times that of the interpolated results. We initially postulated
that this may be caused by incorrect units; that is, the value was entered as "meters" instead of "feet."

It is possible that the interpolation method missed certain mountain peak values - that is, it is reasonable
for some mountains to have much higher peak elevations than the interpolated results - but there are also many
areas where checking the manually entered value against an expected or interpolated value would be helpful in
providing error checking and accuracy feedback.

10.1.5 Neighborhood Extraction

There are several areas for further improvement in the neighborhood task. We only briefly experimented with the
interaction between different clustering algorithms; it may be possible to find more suitable clustering algorithms
for working in tandem to achieve higher results. It may also be possible to tailor the operations on a neighborhood
feature set to the general shape of the natural set, that is, if it contains a tight cluster and many outliers, it may
be beneficial to run the "Circle Cluster" algorithm, whereas if the neighborhood set is initially looser, it may be
better to use the "Median Cluster" algorithm.

Additionally, questions regarding neighborhood generation in foreign localities may be pursued: What geospa-
tial feature types make for the best boundary generation? What are the differences in boundary generation in
various geographies? How can these differences be addressed programmatically?

10.1.6 Wikipedia Traversal

The Wikipedia Traversal task yields several intriguing areas for further research. First, the extension of gazetteer
generation to additional feature types. In our Phase II work, the GeoEngine project focused mainly on geospatial
features: mountains, lakes and populated places. Can these extraction techniques be extended to other features?

Second, the Wikipedia autocorrection task only attempted to identify missing attributes for "populated place"
features. The techniques used for attribute aggregation and missing attribute identification may be extended to
other sets of Wikipedia data. Additionally, research into the types of missing attributes may answer questions
regarding the way in which a human editor interacts with Wikipedia.

10.1.7 Capstone System

There are many directions for future research that spawn from the Afghanistan Places Profile Capstone task.
The most obvious is an extension to additional geographies: What types of challenges might be faced in adding
additional countries? What are the key similarities in "Profile" generation from one locality to another, and how
might these be used to automate the extension process?

Specific modules of the Capstone system might provide a platform for additional research: Can context-specific
information be extracted from a linked Wikipedia article? How do the trends of each media provider, i.e., Flickr,
Twitter or news sources, compare? How can sub-city features be semantically linked in order to provide a more
comprehensive ground-view of a populated place? What additional data can be extracted from the relationship
between specific people and populated places or other people?

160

10.1.8 GeoLinker

The GeoLinker prototype may be extended in many ways. The first is in rapid domain expansion that is.
methods for extending geospatial semantic linking into any general domain must be researched. Secondly, the
machine-assisted linking algorithms require additional research in order to create a machine-learning architecture
that responds to the analysts' final matching decisions. Finally, operational console designs must be researched so
that the final design motivates the analyst to complete tasks; that is, linking tasks should be presented in such a
way as to make the work productive and enjoyable.

10.2 Conclusions

Through the pursuit of each of the GeoEngine tasks, we believe that we have made several important contributions
to state-of-the-art geospatial research. Key highlights are as follows:

• We have shown the usefulness of true "Deep Web" search in the extraction of geospatial data from Web
sources over traditional "Surface Web" searches, which tend to yield not only less data, but unstructured
entities that lack context

• We have shown the ability of aggregate data to overcome limitations of single datasets in the areas of gazetteer
creation and feature extraction

• We have shown the value of geography as an organizing principle - that geospatial proximity is helpful not
only as regards semantic linking, but in confidence-increasing feature grouping

• We have shown the importance of concordance mapping for linked data; where a single dataset may be lacking
valuable attributes, the network created by a linked concordance may recall these values from another source

• We have shown the usefulness of emerging "No-SQL" technology in the geospatial sphere by virtue of its
organizational use in our Capstone and GeoLinker systems

• Finally, we have shown the increased usefulness of combined human-machine consoles that is, where results
have been refined by machine processes but also confirmed by human analysts.

References

[1] Stanford arabic parser. http://nlp.Stanford.edu/software/parser-arabic-faq.shtml.

[2] http://apartments.cazoodle.com/search/index.php?q=Chicago,+IL&beds=-l&baths=-l&price_min=
-l&price_max=-l.

[3] http://chicagomap.zolk.com/.

[4] http://code.flickr.com/blog/2008/10/30/the-shape-of-alpha/.

[5] http://code.flickr.com/blog/2009/04/07/the-only-question-left-is/.

[6] http://code.google.com/apis/ajaxsearch/documentation/.

[7] http://code.google.com/apis/maps/documentation/geocoding/.

[8] http://code.google.com/apis/youtube/overview.html.

[9] http://developer.yahoo.com/search/local/V3/localSearch.html.

[10] http://english.aljazeera.net/indepth/features/2011/09/20119592211411357.html.

[11] http://english.aljazeera.net/news/asia/2011/08/201182175746112785.html.

[12] http: //eu.techcrunch. com/2009/01/09/house-is-on-f ire-were-out- shit- twitter-proves- it self -again/.

[13] http: //matadornetwork. com/change/how-to-f ollow-the-egyptian-uprising-on-twitter.

161

[14] http://news.cnet.com/8301-13577_3-20031600-36.html.

[15] http: //opencv.willowgarage. com/wiki/.

[16] http: //polygon. origo. ethz. ch/.

[17] https : //picasaweb.google . com/home.

[18] http://strategy.wikimedia.org/wiki/Proposal:Implement_0Auth_for_MediaWiki_(and_employ_in_
Wikimedia).

[19] http://twitter.com/.

[20] http://wikimapia.org/.

[21] http://www.ams.org/mathscinet/collaborationDistance.html.

[22] http://www.apartments.com/Results.aspx?page=results&stype=city&city=chicago&state=
il&prvpg=5&Rent_Minimum=0&Rent_Maximum=99999.

[23] http://www.boorah.com/restaurants/best-of/5463/IL/Chicago.html?start=0.

[24] http://www. business insider, com/2009/1/us-airways- crash- rescue-picture- c it izen-joural ism- twitter-at-v

[25] http://www. f lickr. com/services/.

[26] http://www.geometrylab.de/RandomPolygon/index.html.en#twopeasants.

[27] http: //www.google, com/earth/index.html.

[28] http://www.mediabistro.com/fishbowlny/media_events/twittering_mumbai_citizen_journalism_
gets_one_step_closer_to_the_mainstream_101970.asp.

[29] http://www.mediawiki.org/wiki/API:Main_page.

[30] http://www.miislita.com/searchito/levenshtein-edit-distance.html.

[31] http://www.mongodb.org/.

[32] http://www.move.com/apartmentsforrent-search/chicago_il.

[33] http://www.msnbc.msn.eom/id/44453535/ns/world_news/t/clinton-al-qaeda-behind-unconfirmed-threat-us.

[34] http://www.mynewplace.com/search?back=T&q=chicago,+il.

[35] http://www.reportr.net/2011/02/16/visualization-egyptian-uprising-twitter/.

[36] http://www.techcrunch. com/2009/01/08/breakingnewson-f rom-twitter-account-to-public-news-wire-service

[37] http://www.techcrunch.com/2009/06/17/is-twitter-the-cnn-of-the-new-media-generation/.

[38] http: //www. techcrunch. com/2009/08/20/twitter-can-now-know-where-you-tweet/.

[39] http://www.topix.com/.

[40] Hinneburg A. and Koiln 1). A. An efficient approach to clustering in large multimedia databases with noise.
KDD, 1998.

[41] Steven Abney. Parsing by chunks. In Berwick, Abney, and Tenny, editors, Principle-Based Parsing. Kluwer
Academic Publishers, 1991.

[42] Einat Amitay, Nadav Har'El, Ron Sivan, and Aya Soffer. Web-a-where: geotagging web content. In SIGIR
'04-' Proceedings of the 27th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 273-280. ACM, 2004.

162

[43] Chris Anderson. The long tail. In Wired. Wired.com, October 2004.

[44] Global Administrative Areas. GADM database of global administrative areas. 2010.

[45] Yassine Benajiba, Mona Diab, and Paolo Rosso. Arabic named entity recognition using optimized feature
sets. In Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages
284-293, Honolulu, Hawaii, October 2008. Association for Computational Linguistics.

[46] Yassine Benajiba and Paolo Rosso. Arabic named entity recognition using conditional random fields. In
Proceedings of the Workshop on HLT and NLP within the Arabic World, 2008.

[47] GEOnet Names Server NGA Bethesda. National geospatial-intelligence agency, "country files (gns).". NGA
GEOnet Names Server (GNS), 2010.

[48] Didier Bourigault. Surface grammatical analysis for the extraction of terminological noun phrases. In Pro-
ceedings of the 14th conference on Computational linguistics, pages 977-981. Association for Computational
Linguistics, 1992.

[49] Thorsten Brants. Tnt - a statistical part-of-speech tagger. CoRR, cs.CL/0003055, 2000.

[50] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jorg Sander. Lof: Identifying density-based
local outliers. ACM SIGMOD, 2000.

[51] Eric David Brill. A corpus-based approach to language learning. PhD thesis, Philadelphia, PA, USA, 1993.

[52] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. Extracting content structure for web pages based
on visual representation. In Fifth Asia Pacific Web Conference (APWeb2003), 2003.

[53] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. Page-level template detection via isotonic smooth-
ing. Proceedings of 16th international conference on World Wide Web, 2007.

[54] Soumen Chakrabarti, Kunal Punera, and Mallela Subramanyam. Accelerated focused crawling through
online relevance feedback. In WWW, pages 148-159, 2002.

[55] Tao Cheng and Kevin Chen-Chuan Chang. Entity search engine: Towards agile best-effort information
integration over the web. In Proceedings of the Third Conference on Innovative Data Systems Research
(CIDR 2007), pages 108-113, Asilomar, Ca., January 2007. Extended System Demo Description.

[56] Tao Cheng, Xifeng Yan, and Kevin Chen-Chuan Chang. EntityRank: Searching entities directly and holis-
tically. In Proceedings of the 33rd Very Large Data Bases Conference (VLDB 2007), Vienna, Austria,
September 2007.

[57] Tao Cheng, Xifeng Yang, and Kevin Chen-Chuan Chang. Supporting entity search: a large-scale prototype
search engine. In Proceedings of the 2007 ACM SIGMOD Conference (SIGMOD 2007), pages 1144-1146,
Beijing, China, June 2007.

[58] Junghoo Cho, Hector Garcia-Molina, and Lawrence Page. Efficient crawling through url ordering. Computer
Networks, 30(1-7):161-172, 1998.

[59] Kenneth Ward Church. A stochastic parts program and noun phrase parser for unrestricted text. In
Proceedings of the second conference on Applied natural language processing, pages 136-143. Association for
Computational Linguistics, 1988.

[60] Paul Clough. Extracting metadata for spatially-aware information retrieval on the internet. In GIR '05:
Proceedings of the 2005 workshop on Geographic information retrieval, pages 25-30. ACM, 2005.

[61] M. Collins and Y. Singer. Unsupervised models for named entity classification. Proceedings of the Joint
SIGDAT Conference on EMNLP and VLC, 1999.

[62] Backstrom L. Huttenlocher D. Crandall, D. J. and J. Kleinberg. Mapping the world's photos. In n WWW
'09: Proceedings of the 18th international conference on World wide web, page 761-770. ACM, 2009.

163

[63] Martin Doerr and Manos Papagelis. A method for estimating the precision of placename matching. IEEE
Trans, on Knowl. and Data Eng., 19(8):1089 1101, 2007.

[64] David I. Donato. Fast, inclusive searches for geographic names using digraphs. In U.S. Geological Survey
Techniques and Methods, Book 7, chapter Al. 2008.

[65] PEAKLIST. Afghanistan and central/southern pakistan. 2010.

[66] Wikipedia: The Free Encyclopedia. http://en.wikipedia.Org/wiki/Category:Mountains_of_
Afghanistan. 2010.

[67] Wikipedia: The Free Encyclopedia. http://en.wikipedia.org/wiki/Inverse_distance_weighting. 2010.

[68] CGIAR Consortium for Spatial Information. Srtm 90m digital elevation data. SRTM 90m Digital Elevation
Data, 2004.

[69] Sheikholeslami G., Chatterjee S., and Zhang A. Wavecluster: A multi-resolution clustering approach for
very large spatial databases. VLDB, 1998.

[70] GeoNames. http://www.geonames.org/export/web-services.html. GeoNames WebServices, 2010.

[71] Afghanistan GeoNames Advanced Search and Feature Class T. http://www.geonames.org/statistics/
afghanistan.html. 2010.

[72] Hany Hassan and Jeffrey Sorensen. An integrated approach for Arabic-English named entity translation. In
Proceedings of the ACL Workshop on Computational Approaches to Semitic Languages, pages 87-93, Ann
Arbor, Michigan, June 2005. Association for Computational Linguistics.

[73] Alexander G. Hauptmann and Andreas M. Olligschlaeger. Using location information from speech recognition
of television news broadcasts. In Proceedings of the ESC A workshop: Accessing information in spoken audio,
pages 102-106. Cambridge University, April 1999.

[74] Edwin M. Knox and Raymond T. Ng. Algorithms for mining distance-based outliers in large datasets.
VLDB, 1998.

[75] Julian Kupiec. An algorithm for finding noun phrase correspondences in bilingual corpora. In Proceedings
of the 31st annual meeting on Association for Computational Linguistics, pages 17-22. Association for
Computational Linguistics, 1993.

[76] Jochen L. Leidner. Toponym resolution in text: annotation, evaluation and applications of spatial grounding.
SIGIR Forum, 41 (2): 124-126, 2007.

[77] Jochen Lothar Leidner. Toponym Resolution in Text. PhD thesis, University of Edinburgh, jun 2007.

[78] Huifeng Li, Rohini K. Srihari, Cheng Niu, and Wei Li. Location normalization for information extraction. In
Proceedings of the 19th international conference on Computational linguistics, pages 1 7, Morristown, N.I.
USA, 2002. Association for Computational Linguistics.

[79] Huifeng Li, Rohini K. Srihari, Cheng Niu, and Wei Li. Infoxtract location normalization: a hybrid approach
to geographic references in information extraction. In Proceedings of the HLT-NAACL 2003 workshop on
Analysis of geographic references, pages 39-44. Association for Computational Linguistics, 2003.

[80] Ester M., Kriegel H.-P., Sander J., and Xu X. Density-based algorithm for discovering clusters in large
spatial databases with noise. KDD, 1996.

[81] Lewis Mumford. The neighbourhood and the neighbourhood unit. Town Planning Review, 24, 1954.

[82] Simon E. Overell and Stefan M. Riiger. Identifying and grounding descriptions of places. In GIR, 2006.

[83] Agrawal R., Gehrke J., Gunopulos D., and Raghavan P. Automatic subspace clustering of high dimensional
data for data mining applications. ACM SIGMOD, 1998.

164

[84] Lance A. Ramshaw and Mitchell P. Marcus. Text chunking using transformation-based learning. CoRR,
cmp-lg/9505040, 1995.

[85] Adwait Ratnaparkhi. A maximum entropy model for part-of-speech tagging. EMNLP 1, 1996.

[86] Erik Rauch, Michael Bukatin, and Kenneth Baker. A confidence-based framework for disambiguating ge-
ographic terms. In Proceedings of the HLT-NAACL 2003 workshop on Analysis of geographic references,
pages 50-54. Association for Computational Linguistics, 2003.

[87] R. Nair S. Ahern, M. Naaman and J. Yang. World explorer: Visualizing aggregate data from unstructured
text in geo-referenced collections. In Proceedings of the Seventh ACM/1EEE-CS Joint Conference on Digital
Libraries, (JCDL 07), 2007.

[88] D. Samy, A. Moreno-Sandoval, and J. M. Guirao. A proposal for an arabic named entity tagger leveraging a
parallel corpus (spanish-arabic). In Proceedings of International Conference on Recent Advances on Natural
Language Processing RANLP, Borovets, Bulgaria, 2005.

[89] David A. Smith and Gregory Crane. Disambiguating geographic names in a historical digital library. In
ECDL '01: Proceedings of the 5th European Conference on Research and Advanced Technology for Digital
Libraries, pages 127 136. Springer-Verlag, 2001.

[90] Soft Surfer. Fast winding number inclusion of a point in a polygon by dan Sunday. 2006.

[91] Fawcett T. and Provost F. Adaptive fraud detection. Data Mining and Knowledge Discovery Journal, Kluwc.r
Academic Publishers, 1997.

[92] Ng R. T. and Han .J. Efficient and effective clustering methods for spatial data mining. VLDB, 1994.

[93] Zhang T., Ramakrishnan R., and Linvy M. Birch: An efficient data clustering method for very large
databases. ACM SIGMOD, 1996.

[94] N. Good T. Rattenbury and M. Naaman. Towards automatic extraction of event and place semantics from
flickr tags. In In Proceedings of the Thirtieth International ACM SIGIR Conference, (SIGIR 07), year =
2007,.

[95] Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. Feature-rich part-of-speech
tagging with a cyclic dependency network. In NAACL 'OS: Proceedings of tht 2003 Conferena of tin North
American Chapter of the Association for Computational Linguistics on Human Language Technology, pages
173-180. Association for Computational Linguistics, 2003.

[96] Jeffrey Travers, Stanley Milgram, Jeffrey Travers, and Stanley Milgram. An experimental study of the small
world problem. Sociometry, 32:425-443, 1969.

[97] Barnett V. and Lewis T. Outliers in statistical data. John Wiley, 1994.

[98] Atro Voutilainen. Nptool, a detector of english noun phrases. In Proceedings of the Workshop on Very Laige
Corpora, pages 48-57. Association for Computational Linguistics, 1993.

[99] DuMouchel W. and Schonlau M. A fast computer intrusion detection algorithm based on hypothesis testing
of command transition probabilities. KDD, 1998.

[100] Wang W., Yang J., and Muntz R. Sting: A statistical information grid approach to spatial data mining.
VLDB, 1997.

[101] Allison Gyle Woodruff and Christian Plaunt. Gipsy: automated geographic indexing of text documents. ./.
Am. Soc. Inf. Sci., 45(9):645-655, 1994.

[102] G. K. Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley, Cambridge, Massachusetts,
1949.

165

